Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Georgi Vodev
Local energy decay of solutions to the wave equation for nontrapping metrics
Séminaire Équations aux dérivées partielles (Polytechnique) (2002-2003), Exp. No. 14, 6 p.
Article PDF | Reviews MR 2030709 | Zbl 1078.58503

Bibliography

[1] F. Cardoso and G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II, Ann. H. Poincaré 3 (2002), 673-691.  MR 1933365 |  Zbl 1021.58016
[2] F. Cardoso and G. Vodev, High frequency resolvent estimates and energy decay of solutions to the wave equation, Canadian Bull. Math., to appear.  MR 2111812 |  Zbl 1087.58018
[3] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Commun. Pure Appl. Math. 31 (1978), 593-617.  MR 492794 |  Zbl 0368.35020
[4] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II, Commun. Pure Appl. Math. 35 (1982), 129-168.  MR 644020 |  Zbl 0546.35083
[5] B. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\rightarrow \infty $ of solutions of nonstationary problems, Russian Math. Surveys 30 (1975), 1-53.  MR 415085 |  Zbl 0318.35006
[6] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1988.  MR 1054376 |  Zbl 0743.35001
[7] A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Commun. Math. Phys. 212 (2000), 205-217.  MR 1764368 |  Zbl 0955.58023
[8] G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds with cusps, Commun. Partial Diff. Equations 27 (2002), 1437-1465.  MR 1924473 |  Zbl 1015.58005
Copyright Cellule MathDoc 2019 | Credit | Site Map