Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
Frédéric Klopp; Shu Nakamura
Lifshitz tails for some non monotonous random models
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Exp. No. 14, 7 p.
Article PDF | Analyses MR 2532949

Résumé - Abstract

Cet exposé décrit des résultats récents sur le comportement de Lifshitz de la densité d’états de certains modèles aléatoires non monotones. Ici, non monotone signifie que l’opérateur aléatoire n’est pas une fonction monotone des variables aléatoires. L’essentiel des résultats sont obtenus pour des modèles d’Anderson continus ; néanmoins, certains résultats s’appliquent aussi aux modèles de déplacements aléatoires.

Bibliographie

[1] J. Baker, M. Loss, and G. Stolz. Minimizing the ground state energy of an electron in a randomly deformed lattice. Preprint arXiv:0707.3988. arXiv
[2] J. Baker, M. Loss, and G. Stolz. In progress.
[3] F. Germinet and A. Klein. Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys., 222(2):415–448, 2001.  MR 1859605 |  Zbl 0982.82030
[4] F. Ghribi. Internal Lifshits tails for random magnetic Schrödinger operators. J. Funct. Anal., 248(2):387–427, 2007.  MR 2335580 |  Zbl 1121.82022
[5] P. Hislop and F. Klopp. The integrated density of states for some random operators with nonsign definite potentials. Jour. Func. Anal., 195:12–47, 2002.  MR 1934351 |  Zbl 1013.60046
[6] W. Kirsch. Random Schrödinger operators. In A. Jensen H. Holden, editor, Schrödinger Operators, number 345 in Lecture Notes in Physics, Berlin, 1989. Springer Verlag. Proceedings, Sonderborg, Denmark 1988.  MR 1037314 |  Zbl 0712.35070
[7] W. Kirsch and F. Martinelli. Large deviations and Lifshitz singularities of the integrated density of states of random hamiltonians. Communications in Mathematical Physics, 89:27–40, 1983. Article |  MR 707770 |  Zbl 0517.60071
[8] W. Kirsch. Random Schrödinger operators and the density of states. In Stochastic aspects of classical and quantum systems (Marseille, 1983), volume 1109 of Lecture Notes in Math., pages 68–102. Springer, Berlin, 1985.  MR 805991 |  Zbl 0567.35021
[9] W. Kirsch, P. Stollmann, and G. Stolz. Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations, 6(3):241–268, 1998.  MR 1630995 |  Zbl 0927.60067
[10] F. Klopp. Localization for some continuous random Schrödinger operators. Communications in Mathematical Physics, 167:553–570, 1995. Article |  MR 1316760 |  Zbl 0820.60044
[11] F. Klopp. Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J., 98(2):335–396, 1999.  MR 1695202 |  Zbl 1060.82509
[12] F. Klopp and S. Nakamura. The band edge behaviour of the integrated density of states for general Bernoulli random models. In progess.
[13] F. Klopp and S. Nakamura. Spectral extrema and lifshitz tails for non monotonous alloy type models. Preprint. arXiv
[14] H. Najar. The spectrum minimum for random Schrödinger operators with indefinite sign potentials. J. Math. Phys., 47(1):013515, 13, 2006.  MR 2202533 |  Zbl 1111.81062
[15] L. Pastur and A. Figotin. Spectra of random and almost-periodic operators, volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992.  MR 1223779 |  Zbl 0752.47002
[16] P. Stollmann. Caught by disorder, volume 20 of Progress in Mathematical Physics. Birkhäuser Boston Inc., Boston, MA, 2001. Bound states in random media.  MR 1935594 |  Zbl 0983.82016
[17] I. Veselić. Integrated density of states and Wegner estimates for random Schrödinger operators. In Spectral theory of Schrödinger operators, volume 340 of Contemp. Math., pages 97–183. Amer. Math. Soc., Providence, RI, 2004.  MR 2051995 |  Zbl pre02070120
Copyright Cellule MathDoc 2019 | Crédit | Plan du site