Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
Nicolas Burq; Patrick Gérard; Nikolay Tzvetkov
Inégalités de Sogge bilinéaires et équation de Schrödinger non linéaire
Séminaire Équations aux dérivées partielles (Polytechnique) (2002-2003), Exp. No. 17, 22 p.
Article PDF | Analyses MR 2030712

Bibliographie

[1] V. Banica. Thèse, Université de Paris–Sud, en préparation.
[2] A. Besse. Manifolds all of whose geodesics are closed. Springer-Verlag, 1978. Berlin-New York.  MR 496885 |  Zbl 0387.53010
[3] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. Geom. and Funct. Anal., 3 : 107–156, 1993.  MR 1209299 |  Zbl 0787.35097
[4] J. Bourgain. Exponential sums and nonlinear Schrödinger equations. Geom. and Funct. Anal., 3 :157–178, 1993. Article |  MR 1209300 |  Zbl 0787.35096
[5] J.  Bourgain. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity IMRN, 253-283, 1998.  Zbl 0917.35126
[6] J. Bourgain. Global solutions of nonlinear Schrödinger equations. Colloq. Publications, American Math. Soc., 1999.  MR 1691575 |  Zbl 0933.35178
[7] H. Brézis, T. Gallouët. Nonlinear Schrödinger evolution equations. Nonlinear Analysis, Theory, Methods and Applications, 4 :677–681, 1980.  MR 582536 |  Zbl 0451.35023
[8] N. Burq, P. Gérard, N. Tzvetkov. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. (à paraître).  MR 2058384 |  Zbl 1067.58027
[9] N. Burq, P. Gérard, N. Tzvetkov. An instability property of the nonlinear Schrödinger equation on $S^d$. Math. Res. Lett., 9 : 323-335, 2002.  MR 1909648 |  Zbl 1003.35113
[10] N. Burq, P. Gérard, N. Tzvetkov. Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Preprint 2002, Geom. and Funct. Anal. (à paraître).  MR 1978490 |  Zbl 1044.35084
[11] N. Burq, P. Gérard, N. Tzvetkov. An example of singular dynamics for the nonlinear Schrödinger equation on bounded domains. in Proceedings of the conference on Hyperbolic PDEs and related topics, Cortona, September 2002, F. Colombini–T. Nishitani editors, à paraître.  MR 2056842 |  Zbl 02072521
[12] N. Burq, P. Gérard, N. Tzvetkov. The Cauchy problem for the nonlinear Schrödinger equation on compact manifold. J. Nonlinear Math. Physics, 2002 (à paraître).  MR 2063542
[13] L. Carleson, P. Sjölin. Oscillatory integrals and a multiplier problem for the disc. Studia Math., 44 : 287-299, 1972. Article |  MR 361607 |  Zbl 0215.18303
[14] T. Cazenave, F. Weissler. The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$. Nonlinear Analysis, Theory, Methods and Applications, 807–836, 1990.  MR 1055532 |  Zbl 0706.35127
[15] Y. Colin de Verdière. Le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helvetici, 54 :508–522, 1979.  MR 543346 |  Zbl 0459.58014
[16] J. Ginibre. Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain). Séminaire Bourbaki 796, Astérique. 237 : 163-187, 1995. Numdam |  Zbl 0870.35096
[17] J. Ginibre, G. Velo. Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys., 144 :163–188, 1992. Article |  MR 1151250 |  Zbl 0762.35008
[18] V. Guillemin. Lectures on spectral theory of elliptic operators. Duke Math. J., 44 :129–137, 1977. Article |  MR 448452 |  Zbl 0447.58033
[19] L. Hörmander. The spectral function of an elliptic operator. Acta Math., 121 :193–218, 1968.  MR 609014 |  Zbl 0164.13201
[20] L. Hörmander. Oscillatory integrals and multipliers on $FL^p$, Ark. Mat., 11 : 1-11, 1973.  MR 340924 |  Zbl 0254.42010
[21] T. Kato. On nonlinear Schrödinger equations. Ann. I.H.P. (Phys. Théor.), 46 :113–129, 1987. Numdam |  MR 877998 |  Zbl 0632.35038
[22] S. Klainerman, M. Machedon (with appendices by J. Bourgain and D. Tataru) Remark on Strichartz-type inequalities IMRN 201-220, 1996.  MR 1383755 |  Zbl 0853.35062
[23] D. Robert. Autour de l’approximation semi-classique, volume 68 of Progress in Mathematics. Birkhaüser, 1987.  Zbl 0621.35001
[24] C. Sogge. Oscillatory integrals and spherical harmonics. Duke Math. Jour., 53 : 43–65, 1986. Article |  MR 835795 |  Zbl 0636.42018
[25] C. Sogge. Concerning the $L^p$ norm of spectral clusters for second order elliptic operators on compact manifolds. Jour. of Funct. Anal., 77 :123–138, 1988.  MR 930395 |  Zbl 0641.46011
[26] C. Sogge. Fourier integrals in classical analysis. Cambridge tracts in Mathematics, 1993.  MR 1205579 |  Zbl 0783.35001
[27] R. Stanton, A. Weinstein On the $L^4$ norm of spherical harmonics. Math. Proc. Camb. Phil. Soc., 89 :343-358, 1981.  MR 600249 |  Zbl 0479.33010
[28] T. Tao. Multilinear weighted convolutions of $L^2$ functions, and applications to non-linear dispersive equations. Amer. J. Math. 123 : 839-908, 2001.  MR 1854113 |  Zbl 0998.42005
Copyright Cellule MathDoc 2019 | Crédit | Plan du site