Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
Francis Nier
Remarques sur les algorithmes de décomposition de domaines
Séminaire Équations aux dérivées partielles (Polytechnique) (1998-1999), Exp. No. 9, 24 p.
Article PDF | Analyses MR 1721327 | Zbl 1058.65514

Bibliographie

[1] Y. Achdou et F. Nataf. Preconditionners for mortar methods based on local approximations of the Steklov-Poincarré operator. M3AS, 5(7) :967–997, 1995.  MR 1359216 |  Zbl 0838.76036
[2] P. Chevalier et F. Nataf. Symmetrized method with optimized second-order conditions for the Helmholtz equation. In Domain Decomposition 10, volume 218 of Contemporary Mathematics, pages 400–407, 1998.  MR 1649636 |  Zbl 0909.65105
[3] R. Courant et D. Hilbert. Methods of Mathematical Physics II. New York-London, Interscience Publishers, 1962.  Zbl 0099.29504
[4] M. Dauge. Elliptic Boundary Value Problems on Corner Domains, volume 1341 of Lect. Notes Math. Springer, 1988.  MR 961439 |  Zbl 0668.35001
[5] L. Boutet de Monvel. Boundary value problems for pseudo-differential operators. Acta Math, 126 :11–51, 1971.  MR 407904 |  Zbl 0206.39401
[6] B. Desprès. Décomposition de domaine et problème de Helmholtz. C.R. Acad. Sci., 311 :313–316, 1990.  MR 1071633 |  Zbl 0729.35035
[7] F.R. Gantmacher. The Theory of Matrices. Chelsea Publishing Co., 959. 2 vol.  Zbl 0927.15002
[8] P. Grisvard. Singularities in Boundary Value Problems. Masson, Springer, 1992.  MR 1173209 |  Zbl 0766.35001
[9] G. Grubb. Functional Calculus of Pseudodifferential Boundary Problems, volume 65 of Progress in Mathematics. Basel : Birkhaeuser, 1996.  MR 1385196 |  Zbl 0844.35002
[10] T. Hagstrom, A. Jazcilevich et R.P. Tewarson. Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems. Appl. Math. Lett., 1(3) :299–302, 1988.  MR 963704 |  Zbl 0656.65097
[11] N. Jacobson. Basic Algebra. Freeman, 1985. 2 vol.  MR 780184 |  Zbl 0441.16001
[12] C. Japhet. Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides : méthode optimisée d’ordre 2. Thèse de l’Université Paris 13, 1998.
[13] V.A Kondratiev. Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov Mat. Ob.v s.v c., 16 :209–292, 1967.  MR 226187 |  Zbl 0194.13405
[14] P.L. Lions. On the Schwarz alternating method I. In First International Symposium on Domain Decomposition Methods. SIAM, 1988.  MR 972510 |  Zbl 0658.65090
[15] P.L. Lions. On the Schwarz alternating method II : Stochastic Interpretation and Order Properties. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 47–70. SIAM, 1989.  MR 992003 |  Zbl 0681.65072
[16] P.L. Lions. On the Schwarz alternating method III : A variant for nonoverlapping subdomains. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 202–223. SIAM, 1989.  MR 1064345 |  Zbl 0704.65090
[17] F. Nataf. Conditions d’interface pour les méthodes de décomposition de domaine pour le système d’Oseen en dimension 2 et 3. C.R. Acad. Sci. Paris Sér. I Math., 324(10) :1155–1160, 1997.  Zbl 0877.65078
[18] F. Nataf. A Schwarz additive method with high order interface conditions and nonoverlapping subdomains. RAIRO M2AN, 32(32) :107–116, 1998. Numdam |  MR 1619596 |  Zbl 0926.65098
[19] F. Nataf et F. Nier. Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains. Numerische Mathematik, 75(3) :357–377, 1997.  MR 1427713 |  Zbl 0873.65108
[20] F. Nataf et F. Nier. Convergence of domain decomposition methods via semi-classical calculus. Comm. Partial Differential Equations, 23(5–6) :1007–1059, 1998.  MR 1632788 |  Zbl 0909.35007
[21] F. Nataf et F. Rogier. Factorization of the convection-diffusion operator and the Schwarz algorithm. M${}^3$AS, 5(1) :67–93, 1995.  MR 1314997 |  Zbl 0826.65102
[22] F. Nataf, F. Rogier, et E. de Sturler. Domain decomposition methods for fluid dynamics. In Navier Stokes equations and related non linear analysis, pages 307–377. Plenum Press Corporation, 1995.  MR 1373229 |  Zbl 0861.76070
[23] E. Schrohe et B.W. Schulze. Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities I. In Pseudo-differential calculus and mathematical physics, Math. Top. 5, pages 97–209. Akademie Verlag, 1994.  Zbl 0827.35145
[24] E. Schrohe et B.W. Schulze. Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities II. In Boundary value problems, Schrödinger operators, deformation, Math. Top. 8, pages 70–205. Akademie Verlag, 1995.  Zbl 0847.35156
[25] G. Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Number 11 in Publications of Mathematical Society of Japan. Iwanami Shoten, 1971.  MR 314766 |  Zbl 0221.10029
[26] M.A. Shubin. Spectra of elliptic operators on non compact manifolds. In Méthodes semi-classiques, Ecole d’Été Nantes, juin 1991, volume 207 of Astérisque, pages 35–108. SMF, 1992.  Zbl 0793.58039
[27] J. Weyman. The equations of conjugacy classes of nilpotent matrices. Inventiones Mathematicae, 98 :229–245, 1989.  MR 1016262 |  Zbl 0717.20033
Copyright Cellule MathDoc 2019 | Crédit | Plan du site