Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
Denis Serre
Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires
Séminaire Équations aux dérivées partielles (Polytechnique) (1998-1999), Exp. No. 8, 11 p.
Article PDF | Analyses Zbl 1063.35520

Résumé - Abstract

A powerfull method has been developped in [2] for the study of $L^1$-stability of travelling waves in conservation laws or more generally in equations which display $L^1$-contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.

Bibliographie

[1] C. Abourjaily, P. Bénilan. Symmetrization of quasi-linear parabolic problems. Preprint (1996), Besançon.  MR 1682189 |  Zbl 1044.35512
[2] H. Freistühler, D. Serre. $L^1$-stability of shock waves in scalar viscous conservation laws. Comm. Pure & Appl. Math, 51 (1998), pp 291-301.  MR 1488516 |  Zbl 0907.76046
[3] H. Freistühler, D. Serre. The $L^1$-stability of boundary layers for scalar viscous conservation laws. Preprint (1998).  MR 1488516 |  Zbl 0993.35063
[4] K. Ito. BV-solutions of the hyperbolic-elliptic system for a radiating gas. A paraî tre.
[5] S. Kawashima, S. Nishibata. Shock waves for a model system of a radiatin gas. SIAM J. Math. Anal., 30 (1999), pp 95-117.  MR 1646685 |  Zbl 0924.35082
[6] S. Kawashima, S. Nishibata. Weak solutions with a shock to a model system of the radiating gas. Sci. Bull. Josai Univ. (1998), Special issue no. 5, pp 119-130.  MR 1622388 |  Zbl 0915.76074
[7] C. Mascia, R. Natalini. $L^1$ nonlinear stability of travelling waves for a hyperbolic system with relaxation. J. Diff. Equations, 132 (1996), pp 275-292.  MR 1422120 |  Zbl 0879.35099
[8] D. Serre. $L^1$-decay and the stability of shock profiles. Proceedings, Prague 1998. A paraî tre.  Zbl 0938.35098
[9] D. Serre. Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques. Prepublication (1994).
[10] D. Serre. Systèmes de lois de conservation, I. Diderot arts & Sci. (1996). Paris.  MR 1459988
Copyright Cellule MathDoc 2019 | Crédit | Plan du site