Centre de diffusion de revues académiques mathématiques


Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
V. Caselles; B. Coll; J.-M. Morel
Partial differential equations and image smoothing
Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996), Exp. No. 21, 30 p.
Article PDF | Analyses MR 1604382 | Zbl 0877.35055


[AGLM1] L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing Report 9216, 1992 CEREMADE. Université Paris Dauphine. Arch. for Rat. Mech. 16, IX, 200-257, 1993  MR 1225209 |  Zbl 0788.68153
[AMI] L. Alvarez and J.M. Morel. Formalization and Computational Aspects of Image Analysis, Acta Numerica, 1994, Cambridge University Press.  MR 1288095 |  Zbl 0933.68143
[AM] L. Alvarez and Freya Morales. Affine Morphological Multiscale Analysis of Corners and Multiple Junctions. Ref 9402, August 1994, Dept. Informatica y Systemas, Universidad de Las Palmas de Gran Canaria. To appear in International Journal of Computer Vision.
[BMO] B. Merriman, J. Bence and S. Osher, Motion of multiple junctions: a level set approach, CAM Report 93-19. Depart. of Mathematics. University of California, Los Angeles CA, June 1993.  MR 1277282 |  Zbl 0805.65090
[CCCD] V. Caselles, F. Catté, T. Coll and F. Dibos. A geometric model for active contours in image processing. Numerische Mathematik, 66, 1-31, 1993.  MR 1240700 |  Zbl 0804.68159
[CCM] V. Caselles, T. Coll and J.M. Morel. A Kanizsa programme, preprint, Ceremade, 1995. Submitted to Int. Journal of Comp. Vision.
[CGG] Y.G. Chen, Y. Giga and S. Goto. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Diff. Geometry, 33, 749-786, 1991.  MR 1100211 |  Zbl 0696.35087
[CIL] M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equation, Bull. Amer. Math. Soc., 27,1-67,1992.  MR 1118699 |  Zbl 0755.35015
[ES] L.C. Evans and J. Spruck. Motion of level sets by mean curvature. J. Differential Geom., (33): 635-681, 1991.  MR 1100206 |  Zbl 0726.53029
[F] W. Fuchs. Experimentelle Untersuchungen ueber das simultane Hintereinandersehen auf der selben Sehrichtung, Zeitschrift fuer Psychologie, 91, 154-253, 1923
[GH] M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geometry 23, 69-96, 1986.  MR 840401 |  Zbl 0621.53001
[GGIS] Y. Giga, S. Goto, H. Ishii and M.M. Sato. Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 443-470, 1991.  MR 1119185 |  Zbl 0836.35009
[Gr] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26, 285-314, 1987.  MR 906392 |  Zbl 0667.53001
[GM] F. Guichard and J.M. Morel. Image Iterative Smoothing and P.D.E.'s. To appear, Cambridge University Press.
[Ka] G. Kanizsa Vedere e pensare, Il Mulino, Bologna, 1991.
[KTZ] B.B. Kimia, A. Tannenbaum, and S.W. Zucker, On the evolution of curves via a function of curvature, 1: the classical case, J. of Math. Analysis and Applications 163, No 2, 1992.  MR 1145840 |  Zbl 0771.53003
[MS] J.M. Morel and S. Solimini. Variational methods in image processing, Birkhäuser, 1994.
[NM] M. Nitzberg and D. Mumford. "The 2.1 Sketch", in Proceedings of the Third International Conference on Computer Vision, Osaka 1990.
[OS] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation, J. Comp. Physics 79, 12-49, 1988.  MR 965860 |  Zbl 0659.65132
[ST1] G. Sapiro and A. Tannenbaum. On affine plane curve evolution. Journal of Functional Analysis, 119, 1, 79-120, 1994.  MR 1255274 |  Zbl 0801.53008
[Wi] A.P. Witkin. Scale-space filtering. Proc. of IJCAI, Karlsruhe 1983, 1019-1021.
Copyright Cellule MathDoc 2021 | Crédit | Plan du site