Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
R. Weder
The inverse $N$-body problem. A geometrical approach
Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995), Exp. No. 19, 7 p.
Article PDF | Analyses MR 1362567

Bibliographie

[1] V. Enss and R. Weder, "Inverse potential scattering: a geometrical approach". Included in "Mathematical Quantum Theory II: Schrödinger Operators", Proceedings of the Summer School in Mathematical Quantum Theory, August 1993, Vancouver, B. C., J. Feldman, R. Froese, and L. Rosen, editors, CRM Proceedings and Lecture Notes 8, AMS Providence (1995).  MR 1332039 |  Zbl 0838.35092
[2] V. Enss and R. Weder, "Uniqueness and Reconstruction Formulae for inverse N-particle scattering ", To appear in: "Differential Equations and Mathematical Physics ", Proceedings of the International Conference, Univ. of Alabama at Birmingham, March 1994, I. Knowles editor, International Press Boston (ca. 1995).  MR 1703572 |  Zbl 0929.35121
[3] V. Enss and R. Weder, "The geometrical approach to multidimensional inverse scattering", preprint (1995), to appear in J. Math. Phys..  MR 1341964 |  Zbl 0849.35094
[4] R. Weder, "Multidimensional inverse scattering in an electric field". Preprint IIMAS-UNAM (1995).  MR 1402772 |  Zbl 0868.47011
[5] L. Hörmander, "The existence of wave operators in scattering theory", Math. Z. 146, 69- 91 (1976). Article |  MR 393884 |  Zbl 0319.35059
Copyright Cellule MathDoc 2019 | Crédit | Plan du site