Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
A. Bachelot
La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993), Exp. No. 8, 13 p.
Article PDF | Analyses MR 1240549 | Zbl 0884.35157 | 1 citation dans Cedram

Bibliographie

[1] A. Bachelot, Gravitational Scattering of Electromagnetic Field by Schwarzschild Black-Hole, Ann. Inst. Henri Poincaré Physique théorique, 54, 3, 1991, 261-320. Numdam |  MR 1122656 |  Zbl 0743.53037
[2] A. Bachelot, Scattering of eletromagnetic field by De Sitter-Schwarzschild Black-Hole, in "Non linear hyperbolic equations and field theory" Research Notes in Math. 253, 1992, Pitman.  MR 1175199 |  Zbl 0823.35162
[3] A. Bachelot, A. Motet-Bachelot, Les résonances d'un trou noir de Schwarzschild, à paraître aux Ann. Inst. Heinri Poincaré physique théorique. Numdam |  Zbl 0793.53094
[4] A.L. Besse. Einstein Manifolds, Sprinter Verlag 1987.  MR 867684 |  Zbl 0613.53001
[5] R. Carmona, One-Dimentional Schrödinger Operators with Random or Deterministic Potentials: New Spectral Types, J. Func. Anal. 51, 1983, p.229-258.  MR 701057 |  Zbl 0516.60069
[6] S. Chandrasekar, The mathematical theory of black-holes, Oxford University Press, New-York, 1983.  MR 700826 |  Zbl 0511.53076
[7] Y. Choquet-Bruhat, D. Christodoulou. Existence of global solutions of the Yang-Mills Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. Ecole Norm. Sup., 14, 1981, p. 481-506. Numdam |  MR 654209 |  Zbl 0499.35076
[8] D. Christodoulou, S. Klainerman. The Global Nonlinear Stability of the Minkowski Space, preprint 1959.
[9] Th. Damour, Black-Hole eddy currents, Phys. Rev. D 18, 10, 1978, p. 3598, 3604.
[10] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Rel. Grav. 17, 4, 1985, p. 353-369.  MR 788801 |  Zbl 0618.35088
[11] J. Dimock, B.S. Kay, Classical and Quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys. 175, 1987, p. 366-426.  MR 887979 |  Zbl 0628.53080
[13] H. Kitada, Scattering theory for Schrödinger operators with long range potentials IL., J. Math. Soc. Japan, 30, 4, 1978, p.603-632.  MR 634803 |  Zbl 0388.35055
[14] J.P. Nicolas, Non linear Klein-Gordon Equation in Schwarzschild like metric, Fourth International Conference on Hyperbolic Problems, Taormina, 1992, Vieweg Eds.  Zbl 1043.83526
[15] R. Phillips, Scattering Theory for the Wave Equation with a Short Range Perturbation II, Indiana Univ. Math. J., 33, 6, 1984, p.831-846.  MR 763944 |  Zbl 0526.35066
[16] W.T. Shu, Spin Field Equations and Yang-Mills Equation, Ph. D. Thesis, Princeton University, 1990.
[17] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal. 73, 1987, p. 277-296.  MR 899652 |  Zbl 0662.34033
Copyright Cellule MathDoc 2021 | Crédit | Plan du site