Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
F. Bethuel; O. Rey
Le problème des surfaces à courbure moyenne prescrite
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993), Exp. No. 5, 17 p.
Article PDF | Analyses MR 1240546

Bibliographie

[1] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, to appear.  MR 1261547
[2] F. Bethuel, O. Rey, Multiple solutions to the Plateau problem for nonconstant mean curvature, to appear in Duke Math. J. Article |  MR 1262929 |  Zbl 0815.53010
[3] H. Brezis, J.M. Coron, Multiple solutions of H-Systems and Rellich's conjecture, Comm. Pure Applied Math. 37, (1984), pp. 149-187.  MR 733715 |  Zbl 0537.49022
[4] H. Brézis, J.M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rat. Mech. Anal. 89, (1985), pp. 21-56.  MR 784102 |  Zbl 0584.49024
[5] M. Grüter, Regularity of weak H-Surfaces, J. Reine Angew. Math. 329, pp. 1-15.  MR 636440 |  Zbl 0461.53029
[6] E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann. 127, (1954), pp. 258-287.  MR 70013 |  Zbl 0055.15303
[7] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmumg und Anwendungen auf die Kapillaritätstheorie, Math. Z.112, (1969), pp. 205-213. Article |  MR 250208 |  Zbl 0175.40403
[8] D. Hoffmann, J. Spruck, Sobolev and isoperimetric inequalities for riemannian submanifolds, Comm. Pure Appl. Math. 27, (1974), pp. 715-727, et 28, (1975), pp. 765-766.  MR 365424 |  Zbl 0295.53025
[9] C. Morrey, Multiple integrals in the calculus of variations, Springer, Berlin (1966).  MR 202511 |  Zbl 0142.38701
[10] O. Rey, Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann. 291, (1991), pp. 123-146.  MR 1125012 |  Zbl 0761.58052
[11] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of spheres, Ann. Math. 113, (1981), pp. 1-24.  MR 604040 |  Zbl 0462.58014
[12] J. Sacks, K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271, (1982), pp. 639-652.  MR 654854 |  Zbl 0527.58008
[13] K. Steffen, On the existence of surfaces with prescribed mean curvature and boundary, Math. Z. 146, (1976), pp. 113-135. Article |  MR 394394 |  Zbl 0343.49016
[14] K. Steffen, On the uniqueness of surfaces with prescribed mean curvature spanning a given contour, Arch. Rat. Mech. Anal. 94, (1986), pp. 101-122.  MR 832287 |  Zbl 0678.49036
[15] M. Struwe, Nonuniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rat. Anal. 93, (1986), pp. 135-157.  MR 823116 |  Zbl 0603.49027
[16] M. Struwe, Large H-surfaces via the mountain-pass Lemma, Math. Ann. 270, (1985), pp. 441-459.  MR 774369 |  Zbl 0582.58010
[17] M. Struwe, Plateau's problem and the Calculus of Variations, Mathematical Notes 35, Princeton University Press (1988).  MR 992402 |  Zbl 0694.49028
[18] M. Struwe, Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature, Analysis, et cetera, Academic Press, Boston (1990).  MR 1039366 |  Zbl 0703.53049
[19] G. Wang, The Dirichlet problem for the equation of prescribed mean curvature, Ann. Inst. Henri Poincaré, Anal. non linéaire, 9, (1992), pp. 643-655. Numdam |  MR 1198307 |  Zbl 0784.53001
[20] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math.Analysis Appl. 26, (1969), pp. 318-344.  MR 243467 |  Zbl 0181.11501
[21] H. Wente, A general existence theorem for surfaces of constant mean curvature, Math. Z. 120, (1971), pp. 277-278. Article |  MR 282300 |  Zbl 0214.11101
[22] H. Wente, The differential Δx = 2H(xu Λ xv) with vanishing boundary values, Proc. A.M.S. 50, (1975), pp. 113-137.  Zbl 0313.35030
[23] H. Werner, Das problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann. 133, (1957), pp. 303-319.  MR 95335 |  Zbl 0077.34901
Copyright Cellule MathDoc 2021 | Crédit | Plan du site