Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
A. d'Agnolo; P. Schapira
Correspondance de $D$-modules et transformation de Penrose
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993), Exp. No. 21, 10 p.
Article PDF

Bibliographie

[1] R.J. Baston, M.G. Eastwood, The Penrose transform: its interaction with representation theory. Oxford Univ. Press (1989)  MR 1038279 |  Zbl 0726.58004
[2] A. D'Agnolo, P. Schapira, The Penrose correspondence for sheaves and D-modules. To appear
[3] M.G. Eastwood, The generalized Penrose-Ward transform. Math. Proc. Camb. Phil. Soc. 97 (1985)  MR 764506 |  Zbl 0581.32035
[4] M.G. Eastwood, R. Penrose, R.O. Wells Jr., Cohomology and massless fields. Comm. Math. Phys. 78 (1981) Article |  MR 603497 |  Zbl 0465.58031
[5] M. Kashiwara, B-functions and holonomic systems. Invent. Math. 38 (1976)  MR 430304 |  Zbl 0354.35082
[6] M. Kashiwara, Systems of microdifferential equations Progress in Math. 34 (1984)  MR 725502 |  Zbl 0521.58057
[7] M. Kashiwara, T. Oshima, Systems of differential equations with Regular Singularities and their boundary value problems, Ann. of Math. 106 (1977) pp. 145-200.  MR 482870 |  Zbl 0358.35073
[8] M. Kashiwara, P. Schapira, Sheaves on manifolds. Springer Berlin Heidelberg New York 292 (1990)  MR 1074006 |  Zbl 0709.18001
[9] Yu. I. Manin, Gauge field theory and complex geometry. Springer Berlin Heidelberg New York 289 (1988)  MR 954833 |  Zbl 0641.53001
[10] M. Saito, Induced D-modules and differential complexes. Bull. Soc. math. France 117 (1989) Numdam |  MR 1020112 |  Zbl 0705.32005
[11] M. Sato, T. Kawai, M. Kashiwara, Hyperfunctions and pseudo-differential equations. In Hyperfunctions and pseudo-differential equations. H. Komatsu ed., Proceedings Katata 1971. Lect. Notes in Math. Springer Berlin Heidelberg New York 287 (1973)  MR 420735 |  Zbl 0277.46039
[12] P. Schapira, Microdifferential systems in the complex domain. Springer Berlin Heidelberg New York 269 (1985)  MR 774228 |  Zbl 0554.32022
[13] J.-P. Schneiders, Un théorème de dualité relative pour les modules différentiels C.R. Acad. Sci. Paris 303 (1986) 235-238.  MR 860825 |  Zbl 0605.14016
[14] R.S. Ward, R.O. Wells Jr., Twistor geometry and field theory Cambridge monographs on mathematical physics (1990)  MR 1054377 |  Zbl 0729.53068
[15] R.O. Wells Jr., Complex manifolds and mathematical physics. Bulletin of the A.M.S. 1, 2 (1979)  MR 520077 |  Zbl 0444.32014
[16] R.O. Wells Jr., Hyperfunction solutions of the zero-rest-mass field equations Commun. Math. Phys. 78 (1981) Article |  MR 606464 |  Zbl 0465.58032
Copyright Cellule MathDoc 2021 | Crédit | Plan du site