|
Séminaire Équations aux dérivées partielles (Polytechnique)
Table des matières de ce volume | Article suivant J. L. Joly; G. Métivier; J. Rauch On the profiles of nonlinear geometric optics Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993), Exp. No. 1, 14 p.
Article PDF | Analyses MR 1240542
[G] J. Glimm, Solutions in the large for nonlinear systems of conservation laws, Comm. Pure Appl. Math. 18(1965), 685-715. MR 194770 | Zbl 0141.28902 [GL] J. Glimm and P.D. Lax, Decay of solutions of systems of nonlinear hyperbolic hyperbolic conservation laws, Memoirs A.M.S. 101, 1970. Zbl 0204.11304 [Je] A. Jeffrey, Breakdown of the solution to a completely exceptional system of hyperbolic equations, J. Math. Anal. Appl. 45(1974) 375-381. MR 333472 | Zbl 0281.35058 [Jo] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math. 37(1974) 377-405. MR 369934 | Zbl 0302.35064 [JMR1] J-L. Joly, G. Metivier, and J. Rauch, Resonant one dimensional nonlinear geometric optics, Journal of Functional Analysis, to appear. MR 1220985 | Zbl 0851.35023 [JMR2] J-L. Joly, G. Metivier, and J. Rauch. Formal and rigorous nonlinear high frequency hyperbolic waves, pp. 121-143 in Proceedings of Varenna Conference on Nonlinear Hyperbolic Equations and Field Theory, M.K. Murthy and S. Spagnolo eds., Pitman Research Notes in Math. 1992 MR 1175206 | Zbl 0824.35077 [JMR3] J-L. Joly, G. Metivier, and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., to appear Article | MR 1219817 | Zbl 0815.35066 [JMR4] J-L. Joly, G. Metivier. and J. Rauch, Unbounded variation amplification for 3x3 systems of conservation laws, preprint. [H] J. Hunter, Strongly nonlinear hyperbolic waves, in Notes on Numerical Fluid Dynamics Vol.24, Nonlinear Hyperbolic Equations, eds. J. Ballman and R. Jeltsch, Vieweg, Braunschweig, 1989. MR 991371 | Zbl 0689.35083 [L] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10(1957), 537-566. MR 93653 | Zbl 0081.08803 [MR] A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves I, a single space variable. Stud.Appl.Math. 71(1984)149-179. MR 760229 | Zbl 0572.76066 [P] R. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics, Stud. Appl. Math. 71(1984)263-270. MR 975486 | Zbl 0669.76104 [R] J. Rauch, BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one, Comm.Math.Phys. 106(1986)484-489. Article | MR 859822 | Zbl 0619.35073 [S] S. Schochet, Resonant nonlinear geometric optics for weak solutions of conservation laws, preprint. MR 1297667 | Zbl 0856.35080
|
Copyright Cellule MathDoc 2021 | Crédit | Plan du site
|