Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
Thomas C. Sideris
The lifespan of 3D compressible flow
Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992), Exp. No. 5, 10 p.
Article PDF

Bibliographie

[1] Grauer, R. and T.C. Sideris. Numerical solution of 3D incompressible ideal fluids with swirl. To appear in Phys. Rev. Lett.
[2] John, F. and S. Klainerman. Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math. 37 (1984), 443-455.  MR 745325 |  Zbl 0599.35104
[3] Klainerman, S. Remarks on the global Sobolev inequalities in the Minkowski space IRn+1. Comm. Pure Appl. Math. 38 (1985), 631-641.  MR 803252 |  Zbl 0597.35100
[4] Klainerman, S. and A. Majda. Compressible and Incompressible Fluids. Comm. Pure Appl. Math. 35 (1982), 629-651.  MR 668409 |  Zbl 0478.76091
[5] Majda, A. Compressible fluid flow and systems of conservation laws in several space dimensions. Appl. Math. Sciences. 53 New York: Springer (1984).  Zbl 0537.76001
[6] Sideris, T.C. Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101 (1985), 475-485. Article |  MR 815196 |  Zbl 0606.76088
[7] Sideris, T.C. The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math. J. 40 (1991), 535-550.  MR 1119187 |  Zbl 0736.35087
[8] Ukai, S. The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986), 497-506.  MR 849223 |  Zbl 0618.76074
Copyright Cellule MathDoc 2021 | Crédit | Plan du site