Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
Roger Temam
Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992), Exp. No. 20, 11 p.
Article PDF | Analyses MR 1226499

Bibliographie

[1] A.V. Babin, M.I. Vishik, Attractors of evolutions equations, North-Holland, Amsterdam, 1992.  MR 1156492 |  Zbl 0778.58002
[2] P. Constantin, C. Foias, O. Manley, R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150, (1985), p.427-440.  MR 794051 |  Zbl 0607.76054
[3] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, (1989).  MR 966192 |  Zbl 0683.58002
[4] P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc., (1985), vol.53.  MR 776345 |  Zbl 0567.35070
[5] P. Constantin, C. Foias, R. Temam, On the dimension of the attractors in twodimensional turbulence, Physica D., 30, (1988), p.284-296.  MR 947902 |  Zbl 0658.58030
[6] A. Debussche, R. Temam, Inertial manifolds and the slow manifolds in meteorology, Diff. Int. Equ., 4, (1991), p.897-931.  MR 1123343 |  Zbl 0753.35043
[7] T. Dubois, F. Jauberteau, R. Temam, Solutions of the incompressible Navier-Stokes equations by the nonlinear Galerkin Method, to appear.  MR 1242960 |  Zbl 0783.76068
[8] C. Foias, G.R. Sell, R. Temam, Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Serie I, 301 (1985), 139-142. Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eqs., 73 (1988), 309-353.  MR 943945 |  Zbl 0591.35062
[9] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear non Selfadjoint Operators, Translations of Mathematical Monographs, vol, 18. Amer. Math. Soc., 1969.  MR 246142 |  Zbl 0181.13504
[10] J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol 25, AMS Providence.  MR 941371 |  Zbl 0642.58013
[11] F. Jauberteau, C. Rosier, R. Temam, The nonlinear Galerkin method in computational fluid dynamics, Applied Numerical Mathematics, 6,(1989) 190, p.361-370.  MR 1062286 |  Zbl 0702.76077
[12] F. Jauberteau, C. Rosier, R. Temam, A nonlinear Galerkin Method for the Navier-Stokes equations, Computer Math. in Appl. Mechanics and Engineering, 80, (1990), p.245-260.  MR 1067953 |  Zbl 0722.76039
[13] M. Kwak, Finite dimensional inertial forms for the 2D Navier-Stokes equations, University of Minnesota, AHPCRC, Preprint, 1991.  Zbl 0765.35034
[14] O.A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equation, J. Soviet Math. 3, n°4, (1975), p.458-479.  Zbl 0336.35081
[15] O.A. Ladyzhenskaya, On the determination of minimal global B- attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Institute, Leningrad 1987.
[16] J. Lamini, F. Pascal, R. Temam, Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comp. Mech., to appear  MR 1221201 |  Zbl 0771.76039
[17] C.E. Leith, Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, (1980), p.958-968.  MR 576479
[18] J. Mallet-Paret, G.R. Sell, Inertial manifolds,for reaction-diffusion equation in higher space dimension, J. Amer. Math. Soc., I, (1988), 805-866.  MR 943276 |  Zbl 0674.35049
[19] R. Temam, Inertial manifolds, The mathematical Intelligencer, 12, n.° 4, (1990), p.68-74.  MR 1076537 |  Zbl 0711.58025
[20] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics Applied Mathematical Sciences, vol. 68, Springer Verlag, New York, 1988.  MR 953967 |  Zbl 0662.35001
[21] J.J. Tribbia, Nonlinear initialization on an equatorial Beta-plane, Mon. Wea. Rev., 107, (1979), 704-713.
Copyright Cellule MathDoc 2021 | Crédit | Plan du site