Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
V. M. Petkov
Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs
Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992), Exp. No. 18, 9 p.
Article PDF | Analyses MR 1226497

Bibliographie

[BGR] C. Bardos, J.C. Guillot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné. Applications à la théorie de diffusion, Comm. PDE, 7 (1982), 905-958.  MR 668585 |  Zbl 0496.35067
[CPS] F. Cardoso, V. Petkov, L. Stoyanov, Singularities of the scattering kernel for generic obstacles, Ann. Inst. H. Poincaré (Physique théorique), 53 (1990), 445-466. Numdam |  MR 1096103 |  Zbl 0729.35099
[G] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bulletin de S.M.F., Mémoire n° 31, 116 (1988). Numdam |  MR 998698 |  Zbl 0654.35081
[H] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III, Pseudo-differential operators, Berlin; Springer, 1985.  Zbl 05129478
[I1] M. Ikawa, Precise information on the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ., 27 (1987), 69-102. Article |  MR 878491 |  Zbl 0637.35068
[I2] M. Ikawa, Decay of solutions of the wave equation in the exterior of several strictly convex bodies, Ann. Inst. Fourier, 38 (1988), 113-146. Cedram |  MR 949013 |  Zbl 0636.35045
[I3] M. Ikawa, On the existence of the poles of the scattering matrix for several convex bodies, Proc. Japan Acad., 64, Ser. A (1988), 91-93.  MR 966394 |  Zbl 0704.35113
[LP] P. Lax and R. Phillips, Scattering Theory, New-York, Academic Press, 1967.  MR 217440 |  Zbl 0186.16301
[MS] R. Melrose, J. Sjöstrand, Singularities in boundary value problems, I, Comm. Pure Appl. Math., 31 (1978), 593-617, II, 35 (1982), 129-168.  Zbl 0546.35083
[P1] V. Petkov, High frequency asymptotics of the scattering amplitude for non-convex bodies. Comm. PDE, 5 (1980), 293-329.  MR 562545 |  Zbl 0435.35065
[P2] V. Petkov, Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes, Séminaire EDP, Exposé VIII, Ecole Polytechnique, 1989-1990. Cedram |  MR 1073183 |  Zbl 0707.35092
[P3] V. Petkov, The behaviour of the modified resolvent of the Laplacian in the exterior of several convex obstacles, Preprint 1992.
[PS1] V. Petkov, L. Stoyanov, Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math., 109 (1987), 619-668.  MR 900034 |  Zbl 0652.35027
[PS2] V. Petkov, L. Stoyanov, Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles, Trans. Amer. Math. Soc., 312 (1989), 203-235.  MR 929661 |  Zbl 0685.35083
[PS3] V. Petkov, L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, Chichester, 1992.  MR 1172998 |  Zbl 0761.35077
[R] J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823.  MR 254433 |  Zbl 0209.40402
[S1] L. Stoyanov, Nonexistence of generalized scattering rays and singularities of the scattering kernel for generic domains in R3, Proc. Amer. Math. Soc., 113 (1991), 847-856.  MR 1070532 |  Zbl 0742.58056
[S2] L. Stoyanov, On the singularities of the scattering kernel, Preprint 1991.
[S3] L. Stoyanov, Continuity properties of the generalized geodesic flow and singularities of the scattering kernel, in preparation.
[V] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ. Ltd., 1988.  MR 1054376 |  Zbl 0743.35001
Copyright Cellule MathDoc 2019 | Crédit | Plan du site