Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table des matières de ce volume | Article précédent | Article suivant
J. J. Kohn
Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations
Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973), Exp. No. 25, 9 p.
Article PDF | Analyses MR 430317 | Zbl 0267.35036

Bibliographie

[1] Folland G.B. and Kohn J.J.: The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Study, Vol. 75, Princeton Univ. Press (1972).  MR 461588 |  Zbl 0247.35093
[2] Grauert H.: Bemerksverte pseudokonvexe mannifaltigkeiten, Math. Z. 81 (1963), 377-391. Article |  MR 168798 |  Zbl 0151.09702
[3] Greiner P.: On subelliptic estimates for the ∂-Neumann problem in C2, J. Diff. Geom. (to appear).  Zbl 0284.35054
[4] Hörmander L.: L2 estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965), 89-152.  Zbl 0158.11002
[5] Hörmander L.: An introduction to complex analysis in several variables, Van Nostrand (1966).  MR 203075 |  Zbl 0138.06203
[6] Kohn J.J.: Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. A. M. S. (to appear).  Zbl 0276.35071
[7] Kohn J.J.: Boundary behaviour of ∂ on weakly pseudo-convex manifolds of dimension 2, J. Diff. Geom. 6 (1972), 523-542.  Zbl 0256.35060
[8] Kohn J.J. and Nirenberg L.: Non-coercive boundary value problems, Comm. P. App. Math. 18 (1965), 451-472.  MR 181815 |  Zbl 0125.33302
[9] Kohn J.J. and Nirenberg L.: A pseudo-convex domain not admitting a holomorphic support function, Math. Annalen (to appear).  MR 330513 |  Zbl 0248.32013
[10] Sweeney W.J.: Coerciveness in the Neumann problem, J. Diff. Geom. 6 (1972), 375-393.  MR 298708 |  Zbl 0255.58008
Copyright Cellule MathDoc 2019 | Crédit | Plan du site