Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Michele Correggi
A Two-Particle Quantum System with Zero-Range Interaction
Séminaire Équations aux dérivées partielles (Polytechnique) (2008-2009), Exp. No. 18, 17 p.
Article PDF

Résumé - Abstract

We study a two-particle quantum system given by a test particle interacting in three dimensions with a harmonic oscillator through a zero-range potential. We give a rigorous meaning to the Schrödinger operator associated with the system by applying the theory of quadratic forms and defining suitable families of self-adjoint operators. Finally we fully characterize the spectral properties of such operators.

Bibliography

[AGH-KH] S. Albeverio, F. Gesztesy, R. Hogh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New-York, 1988.  MR 926273 |  Zbl 0679.46057
[BC] J. Bellandi, E.S. Caetano Neto, The Mehler Formula and the Green Function of Multidimensional Isotropic Harmonic Oscillator, J. Phys. A: Math Gen. 9 (1976), 683-685.  MR 413827 |  Zbl 0322.35023
[BF] F.A. Berezin, L.D. Faddeev, A Remark on Schrödinger Equation with a Singular Potential, Sov. Math. Dokl. 2 (1961), 372-375.  Zbl 0117.06601
[CDF] M. Correggi, G. Dell’Antonio, D. Finco, Spectral Analysis of a Two Body Problem with Zero-range Perturbation, J. Funct. Anal. 255 (2008), 502–531.  MR 2419969 |  Zbl 1150.81004
[DFigT] G. Dell’Antonio, R. Figari, A. Teta, Hamiltonians for Systems of $ N $ Particles Interacting through Point Interactions, Ann. Inst. H. Poincaré Phys. Théor. 60 (1994), 253–290. Numdam |  MR 1281647 |  Zbl 0808.35113
[DFinT] G. Dell’Antonio, D. Finco, A. Teta, Singularly Perturbed Hamiltonians of a Quantum Reyleigh Gas Defined as Quadratic Forms, Pot. Anal. 22 (2005), 229–261.  MR 2134721 |  Zbl 1061.47067
[F] E. Fermi, Sul Moto dei Neutroni nelle Sostanze Idrogenate, (in italian) Ricerca Scientifica 7 (1936), 13-52.  Zbl 0015.09002
[HS] P.R. Halmos, V.S. Sunder, Bounded Integral Operators on $L^2$ Spaces, Springer Verlag, New York, 1978.  MR 517709 |  Zbl 0389.47001
[KP] R. Kronig, W.G. Penney, Quantum Mechanics of Electrons in Crystal Lattices, Proc. R. Soc. A 130 (1931), 499-513.  Zbl 0001.10601
[P] A. Posilicano, Self-adjoint Extensions of Restrictions, Oper. Matrices 2 (2008), 483–506.  MR 2468877 |  Zbl pre05542831
[S] B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs 120, American Mathematical Society, Providence, RI, 2005.  MR 2154153 |  Zbl 1074.47001
[RS1] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol I: Functional Analysis, Academic Press, San Diego, 1972.  Zbl 0242.46001
[RS3] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol III: Scattering Theory, Academic Press, San Diego, 1975.
[RS4] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol IV: Analysis of Operators, Academic Press, San Diego, 1978.  MR 493422 |  Zbl 0401.47001
Copyright Cellule MathDoc 2019 | Credit | Site Map