Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Radu Ignat
A survey of some new results in ferromagnetic thin films
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Exp. No. 6, 19 p.
Article PDF | Reviews MR 2532942

Bibliography

[1] F. Alouges and S. Labbé, z-invariant micromagnetic configurations in cylindrical domains, preprint.
[2] F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations, ESAIM Control Optim. Calc. Var. 8 (2002), 31–68. Numdam |  MR 1932944 |  Zbl 1092.82047
[3] L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355.  MR 1731470 |  Zbl 0960.49013
[4] P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1–16.  MR 924423
[5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994.  MR 1269538 |  Zbl 0802.35142
[6] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 6, Méthodes intégrales et numériques. [Integral and numerical methods], Masson, Paris 1988.  MR 944304 |  Zbl 0662.73039
[7] A. DeSimone, H. Knüpfer and F. Otto, $2$-d stability of the Néel wall, Calc. Var. Partial Differential Equations 27 (2006), 233-253.  MR 2251994 |  Zbl pre05051269
[8] A. Desimone, R. V. Kohn, S. Müller and F. Otto, Magnetic microstructures-a paradigm of multiscale problems, In ICIAM 99 (Edinburgh), pages 175-190. Oxford Univ. Press, Oxford, 2000.  MR 1824443 |  Zbl 0991.82038
[9] A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844.  MR 1854999 |  Zbl 0986.49009
[10] A. Desimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), 1408–1460.  MR 1916988 |  Zbl 1027.82042
[11] A. Desimone, R. V. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall, Multiscale Model. Simul. 1 (2003), 57–104.  MR 1960841 |  Zbl 1059.82046
[12] A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in: Science of Hysteresis, Elsevier, G. Bertotti and I Magyergyoz, Eds., 2005.  Zbl pre05186906
[13] A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2983-2991.  MR 1875089 |  Zbl 1065.74028
[14] C.J. García-Cervera, Magnetic domains and magnetic domain walls, Ph.D. thesis, New-York University (1999).
[15] A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998.
[16] R. Ignat, A $\Gamma -$convergence result for the Néel wall, preprint.
[17] R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), to appear.
[18] R. Ignat and F. Otto, Compactness of the Landau state in thin-film micromagnetics, in preparation.
[19] R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721–746.  MR 1684723 |  Zbl 0928.35045
[20] W. Jin and R. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000), 355–390.  MR 1752602 |  Zbl 0973.49009
[21] F. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), 737–761.  MR 1676761 |  Zbl 0929.35076
[22] C. Melcher, The logarithmic tail of Néel walls, Arch. Ration. Mech. Anal. 168 (2003), 83–113.  MR 1991988 |  Zbl pre02021055
[23] C. Melcher, Logarithmic lower bounds for Néel walls, Calc. Var. Partial Differential Equations 21 (2004), 209–219.  MR 2085302 |  Zbl 1054.78011
[24] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser Boston Inc., Boston, MA, 2000.  MR 1763040 |  Zbl 0948.35003
[25] R. Riedel and A. Seeger, Micromagnetic treatment of Néel walls, Phys. Stat. Sol. 46, 1971, 377–384.
[26] T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), 294–338.  MR 1809740 |  Zbl 1031.35142
[27] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations 28 (2003), 249–269.  MR 1974456 |  Zbl 1094.35125
[28] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379–403.  MR 1607928 |  Zbl 0908.58004
[29] H.A.M. van den Berg, Self-consistent domain theory in soft-ferromagnetic media. II, Basic domain structures in thin film objects, J. Appl. Phys. 60 (1986), 1104-1113.
Copyright Cellule MathDoc 2019 | Credit | Site Map