Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Fabrice Béthuel; Philippe Gravejat; Jean-Claude Saut
Ondes progressives pour l’équation de Gross-Pitaevskii
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Exp. No. 15, 28 p.
Article PDF

Résumé - Abstract

Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.

Bibliography

[1] F. Béthuel, P. Gravejat, and J.-C. Saut. Existence and properties of travelling waves for the Gross-Pitaevskii equation. Preprint.
[2] F. Béthuel, P. Gravejat, and J.-C. Saut. On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves. Preprint.
[3] F. Béthuel, P. Gravejat, and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation II. Preprint. arXiv
[4] F. Béthuel, G. Orlandi, and D. Smets. Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc., 6(1) :17–94, 2004.  MR 2041006 |  Zbl 1091.35085
[5] F. Béthuel and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation I. Ann. Inst. Henri Poincaré, Physique Théorique, 70(2) :147–238, 1999. Numdam |  MR 1669387 |  Zbl 0933.35177
[6] F. Béthuel and D. Smets. A remark on the Cauchy problem for the 2D Gross-Pitaevskii equation with non zero degree at infinity. Differential Integral Equations, 20(3) :325–338, 2007.  MR 2293989
[7] D. Chiron. Travelling waves for the Gross-Pitaevskii equation in dimension larger than two. Nonlinear Anal., 58(1-2) :175–204, 2004.  MR 2070812 |  Zbl 1054.35091
[8] D. Chiron. Boundary problems for the Ginzburg-Landau equation. Commun. Contemp. Math., 7(5) :597–648, 2005.  MR 2175092 |  Zbl 1124.35081
[9] D. Chiron. Vortex helices for the Gross-Pitaevskii equation. J. Math. Pures Appl., 84(11) :1555–1647, 2005.  MR 2181460 |  Zbl pre02244561
[10] C. Coste. Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B, 1 :245–253, 1998.  MR 1646182
[11] A. de Bouard and J.-C. Saut. Remarks on the stability of generalized KP solitary waves. In Mathematical problems in the theory of water waves (Luminy, 1995), volume 200 of Contemp. Math., pages 75–84. Amer. Math. Soc., Providence, RI, 1996.  MR 1410501 |  Zbl 0863.35095
[12] A. de Bouard and J.-C. Saut. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 14(2) :211–236, 1997. Numdam |  MR 1441393 |  Zbl 0883.35103
[13] A. de Bouard and J.-C. Saut. Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal., 28(5) :1064–1085, 1997.  MR 1466669 |  Zbl 0889.35090
[14] A. Farina. From Ginzburg-Landau to Gross-Pitaevskii. Monatsh. Math., 139 :265–269, 2003.  MR 2001707 |  Zbl 1126.35063
[15] C. Gallo. The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. Preprint.
[16] C. Gallo. The dark solitons of the one-dimensional nonlinear Schrödinger equation. Preprint.
[17] P. Gérard. The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 23(5) :765–779, 2006. Numdam |  MR 2259616 |  Zbl 1122.35133
[18] P. Gérard. The Gross-Pitaevskii equation in the energy space. Preprint.
[19] V.L. Ginzburg and L.P. Pitaevskii. On the theory of superfluidity. Sov. Phys. JETP, 34 :1240, 1958.  MR 105929
[20] O. Goubet. Two remarks on solutions of Gross-Pitaevskii equations on Zhidkov spaces. Monatsh. Math., 151(1) :39–44, 2007.  MR 2317389 |  Zbl 1128.35096
[21] P. Gravejat. Limit at infinity for travelling waves in the Gross-Pitaevskii equation. C. R. Math. Acad. Sci. Paris, 336(2) :147–152, 2003.  MR 1969569 |  Zbl pre01907785
[22] P. Gravejat. A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation. Commun. Math. Phys., 243(1) :93–103, 2003.  MR 2020221 |  Zbl 1044.35087
[23] P. Gravejat. Decay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 21(5) :591–637, 2004. Numdam |  MR 2086751 |  Zbl 1057.35060
[24] P. Gravejat. Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation. Differential Integral Equations, 17(11-12) :1213–1232, 2004.  MR 2100023 |  Zbl pre05265583
[25] P. Gravejat. Asymptotics for the travelling waves in the Gross-Pitaevskii equation. Asymptot. Anal., 45(3-4) :227–299, 2005.  MR 2191764 |  Zbl 1092.35103
[26] P. Gravejat. First order asymptotics for the travelling waves in the Gross-Pitaevskii equation. Adv. Differential Equations, 11(3) :259–280, 2006.  MR 2221483 |  Zbl 1102.35029
[27] E.P. Gross. Hydrodynamics of a superfluid condensate. J. Math. Phys., 4(2) :195–207, 1963.
[28] S. Gustafson, K. Nakanishi, and T.-P. Tsai. Scattering for the Gross-Pitaevskii equation. Math. Res. Lett., 13(2) :273–285, 2006.  MR 2231117 |  Zbl 1119.35084
[29] S. Gustafson, K. Nakanishi, and T.-P. Tsai. Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré, 8(7) :1303–1331, 2007.  MR 2360438 |  Zbl pre05218113
[30] S.V. Iordanskii and A.V. Smirnov. Three-dimensional solitons in He II. JETP Lett., 27(10) :535–538, 1978.
[31] C.A. Jones, S.J. Putterman, and P.H. Roberts. Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions. J. Phys. A, Math. Gen., 19 :2991–3011, 1986.
[32] C.A. Jones and P.H. Roberts. Motions in a Bose condensate IV. Axisymmetric solitary waves. J. Phys. A, Math. Gen., 15 :2599–2619, 1982.
[33] B.B. Kadomtsev and V.I. Petviashvili. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl., 15(6) :539–541, 1970.  Zbl 0217.25004
[34] Y.S. Kivshar and B. Luther-Davies. Dark optical solitons : physics and applications. Phys. Rep., 298 :81–197, 1998.
[35] Zhiwu Lin. Stability and instability of traveling solitonic bubbles. Adv. Differential Equations, 7(8) :897–918, 2002.  MR 1895111 |  Zbl 1033.35117
[36] O. Lopes. A constrained minimization problem with integrals on the entire space. Bol. Soc. Bras. Mat., 25(1) :77–92, 1994.  MR 1274763 |  Zbl 0805.49005
[37] E. Madelung. Quantumtheorie in Hydrodynamische form. Zts. f. Phys., 40 :322–326, 1926.  JFM 52.0969.06
[38] M. Maris. Stationary solutions to a nonlinear Schrödinger equation with potential in one dimension. Proc. Roy. Soc. Edinb. A, 133(2) :409–437, 2003.  MR 1969820 |  Zbl 1038.35122
[39] K. Nakanishi. Scattering theory for the Gross-Pitaevskii equation. Preprint.
[40] L.P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2) :451–454, 1961.
[41] É. Tarquini. A lower bound on the energy of travelling waves of fixed speed for the Gross-Pitaevskii equation. Monatsh. Math., 151(4) :333–339, 2007.  MR 2329092 |  Zbl 1127.35063
[42] T. Tsuzuki. Nonlinear waves in the Pitaevskii-Gross equation. J. Low Temp. Phys., 4(4) :441–457, 1971.
[43] P.E. Zhidkov. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, volume 1756 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001.  MR 1831831 |  Zbl 0987.35001
Copyright Cellule MathDoc 2019 | Credit | Site Map