Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Thierry Colin; Mathieu Colin; Guy Métivier
Nonlinear models for laser-plasma interaction
Séminaire Équations aux dérivées partielles (Polytechnique) (2006-2007), Exp. No. 10, 10 p.
Article PDF | Reviews MR 2385197

Résumé - Abstract

In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.

Bibliography

[1] H. Added and S. Added. Equation of Langmuir turbulence and nonlinear Schrödinger equation : smoothness and approximation. J. Funct. Anal., Vol. 79, (1988), 183-210.  MR 950090 |  Zbl 0655.76044
[2] R. Belaouard, T. Colin, G. Gallice, C. Galusinski, Theorical and numerical study of a quasilinear Zakharov system describing Landau damping. M2AN vol. 40, No6, 961-986 (2007). Numdam |  MR 2297101 |  Zbl 05161010
[3] C. Besse. Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C.R. Acad. Sci. Paris. Sér. I Math., Vol. 326, (1998), 1427-1432.  Zbl 0911.65072
[4] B. Bidégaray. On a nonlocal Zakharov equation. Nonlinear Anal., Vol. 25 (3), (1995), 247-278.  MR 1336525 |  Zbl 0830.35123
[5] M. Colin, T. Colin. On a quasilinear Zakharov System describing laser-plasma interactions. Differential and Integral Equations, 17 (2004), no. 3-4, 297–330.  MR 2037980 |  Zbl 05138408
[6] M. Colin and T. Colin, A numerical model for the Raman Amplification for laser-plasma interaction. Journal of Computational and Applied Math. 193 (2006), no. 2, 535–562.  MR 2229560 |  Zbl 1092.35101
[7] M. Colin, T. Colin. Multidimensional Raman instability. Preprint 2007.
[8] T. Colin, On the Cauchy problem for a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics, Differential and Integral Equations, vol 6, Number 6, pp. 1431-1450, November 1993.  MR 1235204 |  Zbl 0780.35104
[9] T. Colin, On the standing waves solutions to a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics, Physica D, 64, pp. 215-236, 1993.  MR 1214553 |  Zbl 0780.35105
[10] T. Colin, G. Métivier, Instabilities in Zakharov equations for laser propagation in a plasma, in Phase space analysis of PDEs, A. Bove, F. Colombini, D. Del Santo Ed., Progress in Nonlinear Differential equations and their Applications 69, Birkhäuser, 2006.  MR 2263207 |  Zbl 1133.35303
[11] Davey A. and Stewartson K. (1974), On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A 338, pp. 101-10.  MR 349126 |  Zbl 0282.76008
[12] J-L. Delcroix and A. Bers. “Physique des plasmas 1, 2”. Inter Editions-Editions du CNRS, (1994).
[13] J. Ginibre, Y. Tsutsumi and G. Velo. On the Cauchy problem for the Zakharov system. J. Funct. Anal., Vol. 151, (1997), 384-436.  MR 1491547 |  Zbl 0894.35108
[14] L. Glangetas and F. Merle. Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys., Vol. 160 (1), (1994), 173-215. Article |  MR 1262194 |  Zbl 0808.35137
[15] L. Glangetas and F. Merle. Concentration properties of blow up solutions and instability results for Zakharov equation in dimension two. II Comm. Math. Phys., Vol. 160 (2), (1994), 349-389. Article |  MR 1262202 |  Zbl 0808.35138
[16] R.T. Glassey. Convergence of an energy-preserving scheme for the Zakharov equation in one space dimension. Math. of Comput. Vol. 58, Number 197, (1992), 83-102.  MR 1106968 |  Zbl 0746.65066
[17] C.E. Kenig, G. Ponce and L. Vega. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math., Vol. 134 (3), (1998), 489-545.  MR 1660933 |  Zbl 0928.35158
[18] P. Linares, G. Ponce, J.-C. Saut, On a degenerate Zakharov system, Bull. Braz. Math. Soc. (N.S.) 36, no. 1, 1–23, (2005).  MR 2132828 |  Zbl 1070.35087
[19] G. Métivier, Space Propagation of Instabilities in Zakharov Equations, preprint 2007. arXiv
[20] T. Ozawa and Y. Tsutsumi. Existence and smoothing effect of solution for the Zakharov equations. Publ. Res. Inst. Math. Sci, Vol. 28 (3), (1992), 329-361.  MR 1184829 |  Zbl 0842.35116
[21] G. Riazuelo. Etude théorique et numérique de l’influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle. Thèse de l’Université Paris XI.
[22] D.A. Russel, D.F. Dubois and H.A. Rose. Nonlinear saturation of simulated Raman scattering in laser hot spots. Physics of Plasmas, Vol. 6 (4), (1999), 1294-1317.
[23] S. Schochet and M. Weinstein. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys., Vol. 106, (1986), 569-580. Article |  MR 860310 |  Zbl 0639.76054
[24] C. Sulem and P-L. Sulem. “The nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse.” Applied Mathematical Sciences 139, Springer, (1999).  Zbl 0928.35157
[25] C. Sulem and P-L. Sulem. Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris Sér. A-B, Vol. 289 (3), (1979), 173-176.  MR 552204 |  Zbl 0431.35077
[26] B. Texier. Derivation of the Zakharov equations. Archive for Rational Mechanics and Analysis 184 (2007), no.1, 121-183.  MR 2289864 |  Zbl 05146096
[27] V.E. Zakharov, S.L. Musher and A.M. Rubenchik. Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports, Vol. 129, (1985), 285-366.  MR 824169
Copyright Cellule MathDoc 2019 | Credit | Site Map