Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Xavier Blanc
Fast rotating Bose-Einstein condensates and Bargmann transform
Séminaire Équations aux dérivées partielles (Polytechnique) (2005-2006), Exp. No. 5, 18 p.
Article PDF | Reviews MR 2276071

Résumé - Abstract

When a Bose-Einstein condensate (BEC) is rotated sufficiently fast, it nucleates vortices. The system is only stable if the rotational velocity $\Omega $ is lower than a critical value $\Omega _c$. Experiments show that as $\Omega $ approaches $\Omega _c$, the condensate nucleates more and more vortices, which become periodically arranged. We present here a mathematical study of this limit. Using Bargmann transform and an analogy with semi-classical analysis in second quantization, we prove that the system necessarily has an infinite number of vortices and provide an ansatz for the solution. This summarizes two joint works, with A. Aftalion (LJLL, Univ. Paris 6) and J. Dalibard (LKB, Ecole Normale Supérieure), on the one hand, and with A. Aftalion and F. Nier (IRMAR, Univ. Rennes I) on the other hand.

Bibliography

[1] J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of Vortex Lattices in Bose-Einstein Condensates, Science 292, pp 476–479, 2001.
[2] A.A. Abrikosov, Magnetic properties of group II Superconductors, J. Exptl. Theoret. Phys. (USSR) 32(5), pp 1147–1182, 1957.
[3] A. Aftalion, Vortices in Bose Einstein condensates, Progress in nonlinear differential equations, Vol 67, Birkhauser, 2006.  MR 2228356 |  Zbl 05046372
[4] A. Aftalion, X. Blanc Vortex lattices in rotating Bose Einstein condensates, to appear in SIAM J. Math. Anal.  MR 2262946 |  Zbl 05155709
[5] A. Aftalion, X. Blanc, F. Nier, Vortex distribution in the lowest Landau level, Phys. Rev. A 73, p 011601(R), 2006.
[6] A. Aftalion, X. Blanc, F. Nier, Lowest Landau level and Bargmann transform in Bose-Einstein condensates, in preparation.
[7] A. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiemann, E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, p 198, 1995.
[8] A. Aftalion, X. Blanc and J. Dalibard, Vortex patterns in fast rotating Bose Einstein condensates, Phys. Rev. A 71, p 023611, 2005.
[9] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 14, pp 187–214, 1961.  MR 157250 |  Zbl 0107.09102
[10] G. Baym, C.J. Pethick, Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates, Phys. Rev. A 69, 2004.
[11] V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Fast Rotation of a Bose-Einstein Condensate, Phys. Rev. Lett. 92, 050403, 2004.
[12] E. Carlen, Some Integral Identities and Inequalities for Entire Functions and Their Application to the Coherent State Transform, J. Funct. Analysis 97, 1991.  MR 1105661 |  Zbl 0743.46018
[13] K. Chandrasekharan Elliptic Functions Grundlehren der mathematischen Wissenschaften 281, Springer, 1985.  MR 808396 |  Zbl 0575.33001
[14] N. R. Cooper, S. Komineas, N. Read, Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates, Phys. Rev. A 70, p 033604, 2004.
[15] J.M. Delort FBI transformation. Second microlocalization and semilinear caustics. Lect. Notes in Math. 1522, Springer-Verlag, 1992.  MR 1186645 |  Zbl 0760.35004
[16] P. Engels et al, Observation of Long-lived Vortex Aggregates in Rapidly Rotating Bose-Einstein Condensates, Phys. Rev. Lett. 90, p 170405, 2003.
[17] E. A. Cornell, W. Ketterle, C. E. Wiemann, Les Prix Nobel. The Nobel Prizes 2001, Editor Tore Frängsmyr, [Nobel Foundation], Stockholm, 2002.
[18] U.R. Fischer, G. Baym, Vortex states of rapidly rotating dilute Bose-Einstein condensates, Phys. Rev. Lett. 90, p 140402, 2003.
[19] G.B Folland Harmonic Analysis in Phase Space, Princeton University Press, 1989.  MR 983366 |  Zbl 0682.43001
[20] L. Gross Hypercontractivity on complex manifolds, Acta Math. 182, 1999.  MR 1710181 |  Zbl 0983.47026
[21] T. L. Ho, Bose-Einstein Condensates with Large Number of Vortices, Phys. Rev. Lett. 87, p 060403, 2001.
[22] L. Hörmander. Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques et Applications 26, Springer, 1997.  MR 1466700 |  Zbl 0881.35001
[23] W.H. Kleiner, L.M. Roth, S.H Autler, Bulk Solutions of Ginzburg-Landau Equations for type II Superconductors: Upper Critical Fiel Region, Phys. Rev. 133(5A), pp 1226–1227, 1964.  Zbl 0115.45605
[24] L. D. Landau,E. M. Lifschitz, Quantum Mechanics (Oxford: Pergamon), 1965.
[25] N. Lerner The Wick calculus of pseudo-differential operators and energy estimates, New trends in microlocal analysis (Tokyo 1995), Springer, Tokyo, 1997.  MR 1636234 |  Zbl 0893.35144
[26] E. H. Lieb, R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Arxiv:math-ph/0504042, 2005. arXiv |  MR 2215615
[27] E. H. Lieb, R. Seiringer, J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61, p 0436021, 2000.
[28] E. H. Lieb, R. Seiringer, J. Yngvason, A rigourous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys. 224, pp 17–31, 2001.  MR 1868990 |  Zbl 0996.82010
[29] K. Lu, X. B. Pan, Gauge invariant eigenvalue problems in $R^2$ and in $R^2_+$. Trans. Amer. Math. Soc. 352, no. 3, pp 1247–1276, 2000.  MR 1675206 |  Zbl 1053.35124
[30] K. Madison K, Chevy F, Bretin V, Dalibard J, Vortex Formation in a Stirred Bose-Einstein Condensate, Phys. Rev. Lett. 84, p 806, 2000
[31] A. Martinez An Introduction to Semiclassical Analysis and Microlocal Analysis, Universitext, Springer-Verlag, 2002.  MR 1872698 |  Zbl 0994.35003
[32] M.R. Matthews et al., Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83, p 2498, 1999.
[33] S. Nonnenmacher, A. Voros, Chaotic Eigenfunctions in Phase Space, J. Stat. Phys. 92, pp 431–518, 1998.  MR 1649013 |  Zbl 1079.81530
[34] C. Pethick, H. Smith, Bose-Einstein condensation in dilute gases, Cambridge University Press, 2001.
[35] L. Pitaevskii, S. Stringari, Bose-Einstein condensation, Oxford University Press, 2003.  MR 2012737 |  Zbl 1110.82002
[36] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, E. A. Cornell, Rapidly Rotating Bose-Einstein Condensates in and near the Lowest Landau Level, Phys. Rev. Lett. 92, p 040404 2004.
[37] K. Schnee, J. Yngvason, Bosons in Disc-Shaped Traps: From 3D to 2D, Erwin Schrödinger Institute of Vienna, preprint n$^\circ $ 1716, 2005. arXiv |  MR 2276357 |  Zbl 05159670
[38] D. E. Sheehy, L. Radzihovsky, Vortices in Spatially Inhomogeneous Superfluids, Phys. Rev. A 70, p 063620 2004.
[39] J. Sjöstrand Singularités analytiques microlocales. Soc. Math. France, Astérisque 95, pp 1–166, 1982.  MR 699623 |  Zbl 0524.35007
[40] S. Stock, V. Bretin, F. Chevy, J. Dalibard, Shape oscillation of a rotating Bose-Einstein condensate, Europhys. Lett. 65, p 594, 2004.
[41] O. Törnkvist, Ginzburg-Landau theory of the electroweak phase transition and analytical results, arXiv:hep-ph/9204235, 1992.
[42] G. Watanabe, G. Baym and C. J. Pethick, Landau levels and the Thomas-Fermi structure of rapidly rotating Bose-Einstein condensates, Phys. Rev. Lett. 93, p 190401 2004.
Copyright Cellule MathDoc 2019 | Credit | Site Map