Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Serge Alinhac
Solutions explosives exceptionnelles
Séminaire Équations aux dérivées partielles (Polytechnique) (2005-2006), Exp. No. 19, 10 p.
Article PDF

Bibliography

[1] Alinhac S., “Blowup for Nonlinear Hyperbolic Equations”, Progr. Nonlinear Differential Equations Appl. 17, Birkhäuser Boston, Boston MA, (1995).  Zbl 0820.35001
[2] Alinhac S., “ A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations”, Journées “Equations aux Dérivées partielles” (Forges les Eaux, 2002). Université de Nantes, Nantes, 2002. http://www.math.sciences.univ-nantes.fr/edpa. Cedram
[3] Alinhac S., “Explosion géométrique pour des systèmes quasi-linéaires”, Amer. J. Math. 117, (1995), 987-1017.  Zbl 0840.35060
[4] Alinhac S., “Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II”, Acta Math. 182, (1999), 1-23.  Zbl 0973.35135
[5] Alinhac S., “Stability of geometric blowup”, Arch. Rat. Mech. Analysis 150, (1999), 97-125.  Zbl 0962.35119
[6] Alinhac S., “Remarks on the blowup rate of classical solutions to quasilinear multidimensional hyperbolic systems ”, J. Math. Pure Appl. 79, (2000), 839-854.  Zbl 0979.35092
[7] Alinhac S., “Rank two singular solutions for quasilinear wave equations”, Inter. Math. Res. Notices 18, (2000), 955-984.  Zbl 0971.35053
[8] Alinhac S., “Exceptional Blowup Solutions to Quasilinear Wave Equations I and II”, Int. Math. Res. Notices, (2006) et preprint Orsay, (2006).
[9] Alinhac S., “A Numerical Study of Blowup for Wave Equations with Gradient Terms”, preprint, Orsay, (2006).
[10] Bourgain J., Wang W., “Construction of blowup solutions for the nonlinear Schödinger equation with critical nonlinearity”, Ann. Scuola Norm. Sup. Pisa Cl. Sc. 25, (1997), 197-215. Numdam |  Zbl 1043.35137
[11] Hörmander L., “Lectures on Nonlinear Hyperbolic Differential Equations”, Math. Appl. 26, Springer Verlag, Berlin, (1997).  Zbl 0881.35001
[12] John F., “ Nonlinear Wave Equations, Formation of singuarities”, Univ. Lecture Ser. 2, Amer. Math. Soc. , Providence, RI, (1990).  Zbl 0716.35043
[13] Klainerman S., “The null condition and global existence to nonlinear wave equations”, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 ( Santa Fe, NM, 1984), 293-326. Lect. Appl. Math. 23, Amer. Math. Soc. , Providence, RI, (1986).  Zbl 0599.35105
[14] Lax P. D., “Hyperbolic systems of conservation laws II”, Comm. Pure Appl. Math. 10, (1957), 537-566.  Zbl 0081.08803
[15] Majda A., “Compressible fluid flow and systems of conservation laws ”, Appl. Math. Sc. 53, Springer Verlag, New-York (1984).  Zbl 0537.76001
[16] Merle F., “Construction of solutions with exactly k blowup points for the Schrödinger equation with critical nonlinearity”, Comm. Math. Physics 129, (1990), 223-240. Article |  Zbl 0707.35021
[17] Merle F. et Raphaël P., “On a sharp lower bound on the blowup rate for the $L^2$ critical nonlinear Schrödinger equation”, J. Amer. Math. Soc. 19, (2006), 37-90.  Zbl 1075.35077
[18] Merle F. et Zaag H., “Determination of the blowup rate for the semilinear wave equation”, Amer. J. Math. 125, (2003), 1147-1164.  Zbl 1052.35043
[19] Merle F. et Zaag H., “Determination of the blowup rate for a critical semilinear wave equation”, Math. Ann. 331, (2005), 395-416.  Zbl 02156226
[20] Merle F. et Zaag H., “On growth rate near the blowup surface for semilinear wave equations”, Intern. Math. Res. Notices 19, (2005), 1127-1155.  Zbl 02188816
[21] Perelman G., “On the blowup phenomenon for the critical nonlinear Schrödinger equation in 1D”, Ann. Inst. H. Poincaré 2, (2001), 605-673.  Zbl 1007.35087
[22] Raphaël P., “Stability of the log-log bound for blowup solutions to the critical nonlinear Schrödinger equation”, Math. Annalen 331, (2005), 577-609.  Zbl 1082.35143
Copyright Cellule MathDoc 2019 | Credit | Site Map