Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Frank Pacard
Le problème de Yamabe sur des sous domaines de $S^n$
Séminaire Équations aux dérivées partielles (Polytechnique) (1996-1997), Exp. No. 9, 14 p.
Article PDF | Reviews MR 1482815 | Zbl 1070.53501

Bibliography

[1] L.A. Caffarelli, B. Gidas et J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42, (1989), 271-297.  MR 982351 |  Zbl 0702.35085
[2] P. Delanoë, Generalized stereographic projection with prescribed scalar curvature, Contemporary Mathematics : Geometry, Physics and Nonlinear PDE, V. Oliker et A. Treibergs edts. AMS (1990).  MR 1155406 |  Zbl 0770.53027
[3] D. Finn Positive solutions of $\Delta _g u = u^q + Su$ singular at submanifolds with boundary, Indiana Univ. Math. J., 43 (1994), 1359-1397.  MR 1322624 |  Zbl 0830.35035
[4] D. Finn On the negative case of the singular Yamabe problem, MSRI dg-ga server, preprint (1996). arXiv |  MR 1760721
[5] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Physics. 68, (1979), 209-243. Article |  MR 544879 |  Zbl 0425.35020
[6] N. Korevaar, R. Mazzeo, F. Pacard et R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Preprint (1997). arXiv |  MR 1666838
[7] C. Loewner et L. Nirenberg, Partial differential equations invariants under conformal or projective transformations. Contributions to Analysis. Acad. Press N.Y. (1974) 245-272.  MR 358078 |  Zbl 0298.35018
[8] X. Ma et R. Mc Owen, Complete conformal metric with zero scalar curvature in Riemannian Manifolds Comm. P.D.E.
[9] R. Mazzeo, Regularity for the singular Yamabe equation, Indiana Univ. Math. J. 40 (1991), 1277-1299.  MR 1142715 |  Zbl 0770.53032
[10] R. Mazzeo et F. Pacard, A new construction of singular solutions for a semilinear elliptic equation using asymptotic analysis J. Diff. Geom. 44, (1996), 331-370.  MR 1425579 |  Zbl 0869.35040
[11] R. Mazzeo et F. Pacard, Constant scalar curvature metrics with isolated singularities MSRI dg-ga server, preprint (1996) arXiv |  MR 1712628
[12] R. Mazzeo, D. Pollack et K. Uhlenbeck. Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 9 2, (1996), 303-344.  MR 1356375 |  Zbl 0849.58012
[13] R. Mazzeo, D. Pollack et K. Uhlenbeck. Connected sum constructions for constant scalar curvature metrics To appear, Top. Methods Nonlin. Anal. 6, (1995), 207-233.  MR 1399537 |  Zbl 0866.58069
[14] R. Mazzeo et N. Smale, Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Diff. Geom. 34 (1991), 581-621.  MR 1139641 |  Zbl 0759.53029
[15] F. Pacard, The Yamabe problem on subdomains of even dimensional spheres, Top. Methods Nonlin. Anal. 6, (1995), 137-150.  MR 1391949 |  Zbl 0854.53037
[16] D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of $S^n$, Indiana Univ. Math. J. 42, (1993), 1441-1456.  MR 1266101 |  Zbl 0794.53025
[17] R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation Comm. Pure and Appl. Math. XLI, (1988), 317-392.  MR 929283 |  Zbl 0674.35027
[18] R. Schoen et S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92, (1988), 47-72.  MR 931204 |  Zbl 0658.53038
Copyright Cellule MathDoc 2019 | Credit | Site Map