Center for diffusion of mathematic journals

 
 
 
 

Séminaire Équations aux dérivées partielles (Polytechnique)

Table of contents for this volume | Previous article | Next article
Jean-Marc Delort
L’équation de Klein Gordon à données petites
Séminaire Équations aux dérivées partielles (Polytechnique) (1996-1997), Exp. No. 5, 13 p.
Article PDF | Reviews Zbl 1069.35511 | 1 citation in Cedram

Bibliography

[1] J. Bourgain : Fourier transforms restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II Geom. Funct. Anal. 3, (1993) 107-156, 202-262. Article |  MR 1209299 |  Zbl 0787.35098
[2] V. Georgiev et P. Popivanov : Global solutions to the two-dimensional Klein-Gordon equations, Commun. Part. Diff. Eqs. 16, (1991) 941–995.  MR 1116850 |  Zbl 0741.35039
[3] L. Hörmander : Non-linear Hyperbolic Differential Equations, Lectures Notes in Lund, preprint, (1986-87).
[4] S. Klainerman : Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38, (1985) 631-641.  MR 803252 |  Zbl 0597.35100
[5] S. Klainerman et M. Machedon : Smoothing estimates for null form and applications, 81 Duke Math. J. (1995) 99-133. Article |  MR 1381973 |  Zbl 0909.35094
[6] R. Kosecki : The Unit Condition and Global Existence for a Class of Nonlinear Klein-Gordon Equations, Jour. Diff. Eq. 100, (1992) 257-268.  MR 1194810 |  Zbl 0781.35062
[7] K. Moriyama, S. Tonegawa et Y. Tsutsumi : Almost Global Existence of Solution for the Quadratic Semilinear Klein-Gordon Equation in One Space Dimension, preprint, (1996).  MR 1482854
[8] T. Ozawa, K. Tsutaya et Y. Tsutsumi : Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic non-linearity in two space dimensions, Math. Z., 222, (1996) 341-362. Article |  MR 1400196 |  Zbl 0877.35030
[9] J. Shatah : Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38, (1985) 685-696.  MR 803256 |  Zbl 0597.35101
[10] J.C.H. Simon et E. Taflin : The Cauchy problem for nonlinear Klein-Gordon equations, Commun. Math. Phys. 152, (1993) 433-478. Article |  MR 1213298 |  Zbl 0783.35066
Copyright Cellule MathDoc 2021 | Credit | Site Map