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Essential self-adjointness for magnetic Schrodinger operators
on non-compact manifolds

MIKHAIL SHUBIN

We give a condition of essential self-adjointness for magnetic Schrodinger operators
on non-compact Riemannian manifolds with a given positive smooth measure which is
fixed independently of the metric. This condition is related to the classical completeness
of a related classical hamiltonian without magnetic field. The main result generalizes
the result by I. Oleinik [29, 30, 31], a shorter and more transparent proof of which was
provided by the author in [41]. The main idea, as in [41], consists in an explicit use of
the Lipschitz analysis on the Riemannian manifold and also by additional geometrization
arguments which include a use of a metric which is conformal to the original one with a
factor depending on the minorant of the electric potential.

1. Introduction

Let (M, g) be a Riemannian manifold (i.e. M is a C*°-manifold, (g;%) is a Rie-
mannian metric on M), dim M = n. We will always assume that M is connected.
We will also assume that we are given a positive smooth measure du i.e. a mea-
sure which has a C* positive density p(z) with respect to the Lebesgue measure
dr = dx'...dz™ in any local coordinates z!,. .., 2", so we will write du = p(z)dz.
This measure may be completely independent of the Riemannian metric, but may
of course coincide with the canonical measure dy, induced by the metric (in this
case p = /g where g = det(g;¢), so locally du, = \/gdx).

The main purpose of this paper is to study essential self-adjointness of magnetic
Schrédinger operators in L2(M) = L2(M, dp).

Denote Al(’k)(M) the set of all k-smooth (i.e. of the class C*) complex-valued
p-forms on M. We will write A?(M) instead of Al(’oo)(M). A magnetic potential

n

is a real-valued 1-form A € A%l)(M). So in local coordinates z',...,z™ it can be
written as

A= Ajdad,

where 4; = A;(z) are real-valued C'-functions of the local coordinates, and we
use the standard Einstein summation convention.
The usual differential can be considered as a first order differential operator

d:C®(M) — A'(M).



We will also need a deformed differential

dA:COO(M)—>A%1)(M), u— du + (uA,

where i = v/—1.

The Riemannian metric (g;x) and the measure du induce an inner product in the
spaces of smooth forms with compact support in a standard way. In particular,
this inner product on functions has the form

(u,0) = / wvdy,
M

where the bar over v means the complex conjugation.
For smooth forms a = a;d2?, 3 = Brdz* denote

<Oé,ﬂ> = gjkajﬁka

where (g7*) is the inverse matrix to (g;x). So the result (a, 3) is a scalar function
on M. Then for a, 8 with compact support we have

(a,) = /M<a,5>du,

where
B = Brda*.

Using the inner products in spaces of smooth functions and forms with compact
support we can define the completions of these spaces. They are Hilbert spaces
which we will denote L2(M) for functions and L?A* (M) for 1-forms. These spaces
depend on the choice of the metric (g;x) and the measure du. However we will skip
this dependence in the notations of the spaces for simplicity of notations. This
will not lead to a confusion because both metric and measure will be fixed through
the whole paper unless indicated otherwise.

The corresponding local spaces will be denoted L} (M) and L7, _A'(M) respec-

loc
tively. These spaces do not depend on the metric or measure. For example L? (M)
consists of all functions u : M — C such that for any local coordinates z',..., 2
defined in an open set U C M we have u € L? with respect to the Lebesgue
measure dz' ...dz"™ on any compact subset in U.
Formally adjoint operators to the differential operators with sufficiently smooth
coefficients are well defined through the inner products above. In particular, we

have an operator

n

&y Ay (M) — C(M),
defined by the identity
(dau,w) = (u, djw),u € CX(M),w € A%l)(M).

(Here C2°(M) is the set of all C*° functions with compact support on M)
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Therefore we can define the magnetic Laplacian A4 (with the potential A) by
the formula
—Ap=diyds: C®(M) — C(M).

Now the main object of our study will be the magnetic Schridinger operator
(1.1) H=Hay=-As+V,

where V' € Lf° (M) i.e. V is a locally bounded measurable function which is
called electric potential. We will always assume V to be real-valued. Then H
becomes a symmetric operator in L?(M) if we consider it on the domain C2°(M).
In this paper we will discuss conditions on V' (at infinity) which guarantee that
this operator is essentially self-adjoint in L?(M) (which means that its closure in
L?(M) is a self-adjoint operator).

Note that for A = 0 the operator A4 becomes a generalized Laplace-Beltrami
operator A on scalar functions on M and it can be locally written in the form

10 ik 0u

(1.2) Au = O (pg”" 5 %)

The operator H4 v with A =0 becomes a generalized Schrédinger operator
(1.3) Hyy = —A+ V.

Recent results by I. Oleinik [29, 30, 31] provided the most advanced essential
self-adjointness condition for Hyy which is directly connected to the classical
completeness of a related hamiltonian system. (I. Oleinik considered the case
dp = dpg only but his arguments work for arbitrary du without any changes.)
A simpler and more transparent proof of the I. Oleinik’s result was given in [41].
In the present paper we extend the result of I. Oleinik to the case of magnetic
Schrodinger operators H 4,y using a modification of arguments given in [41]. The
result is that the essential self-adjointness for H 4y holds under the same condition
on (M, g) and V as was imposed in the I. Oleinik’s theorem, and with no additional
condition at infinity on the magnetic potential A.

The importance of the essential self-adjointness of H becomes clear if we turn to
the quantum mechanics and try to use the differential expression (1.1) to produce a
quantum observable (a Hamiltonian) associated with this expression: a self-adjoint
operator in L*(M) which extends H|ce(nr). Essential self-adjointness means that
such an extension exists and is unique. This in turn implies the existence and
uniqueness of the solution of the following Cauchy problem for the evolutionary
Schrédinger equation:

%812_7(515) = H(t), 1(0) = by € CZ(M), 1(t) € L2(M) for all t € R.

(See e.g. [1], Ch.VI, Sect.1.7.) Here H is applied to ¢ in the sense of distributions
and the derivative in ¢ is taken in the norm sense.



In case when this existence and uniqueness holds, it is natural to say that we
have quantum completeness for the corresponding quantum system. If for example
the uniqueness does not hold, we need some extra data to construct a Hamiltonian,
e.g. boundary conditions etc.

Let us also consider the classical system, which corresponds to the quantum
Hamiltonian Hy,y, i.e. the Hamiltonian system with the Hamiltonian

(1.4) h(p,z) = |p]* + V(z)

in the cotangent bundle T*M (with the standard symplectic structure). Here p is
considered as a cotangent vector at the point € M, |p| means the length of p
with respect to the metric induced by g on T*M. In local coordinates (z!, ..., z")
we have

Ip|*> = 9% (z)pip;, where p = p;dz? € T} M.

In the coordinates (x!,...,z™, pi,...,p,) the hamiltonian system has the form

dx? Oh dp; oh .
- - -1,...,n.

(1.5) dt  Op;’ dt Oz’ !

Let us assume for a moment that V € C?(M), so the local Hamiltonian flow
associated with the classical Hamiltonian (1.4) is well defined. Let us say that the
system is classically complete if all the hamiltonian trajectories, i.e. solutions of
(1.5), with arbitrary initial conditions are defined for all values of ¢. Usually it is
more natural to require that they are defined for almost all initial conditions (in the
phase space T* M), but this distinction will not play any role in our considerations,
though it is relevant if we want to treat potentials with local singularities (e.g.
Coulomb type potentials).

We refer to Reed and Simon [34] for a more detailed discussion about classical
and quantum completeness.

In the future we will assume that

(1.6) Viz) > —Q(z) for all x € M,

where @ is a real-valued function which is positive and somewhat more regular
than V itself.

For any z,y € M denote by d4(x,y) the distance between = and y induced by
the Riemannian metric g.

Now we can formulate the main result which generalizes the result of I. Oleinik
[30] (see also [41]):

Theorem 1.1. Assume that A € A%l)(M), V' satisfies (1.6) where Q(x) > 1 for
all z € M and the following conditions are satisfied:
(a) The function Q@ /2 is globally Lipschitz i.e.

(L.7) Q™% (x) = Q7 (y)| < Cdy(a,y), =,y € M,
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0 % Q1 2ds = oo,
where the integral is taken along any parametrized curve (with a parameter t €
[a,00)), such that it goes out to infinity (i.e. leaves any compact K C M starting
at some value of the parameter t), ds means the arc length element associated with
the given metric g.

Then the operator Ha v given by (1.1) is essentially self-adjoint.

Remark 1.2. The requirement (b) is related to the classical completeness of
the system with the Hamiltonian |p|? — Q(z) if we additionally assume that Q €
C?(M). To illustrate this assume for simplicity that M = R™ and the metric g is
the standard flat metric on R". Now assume that (b) is satisfied. Then along the
classical trajectory of the Hamiltonian |p|* — Q(z) we have

Ip|*> — Q(x) = E = const.

It follows that
ds ds ds

Tl 2 2VE+ Q)

hence the classical completeness for the Hamiltonian |p?| — Q(z) follows from the
condition (b).

Remark 1.3. If we assume that @ € C?(M) then the condition (b) is equivalent
to the geodesic completeness of the Riemannian metric § given by g;; = Q 1g;;
(so g is conformal to the original metric g).

Note also that (b) implies that the original metric g is also complete because

Q=1

Remark 1.4. The requirement (a) in the theorem does not impose any serious
restrictions on the growth of ) at infinity, but rather restricts oscillations of Q.
Indeed, we can equivalently rewrite (a) in the form of the following estimate:

dQ| < 20Q%/?,

where |dQ| means the length of the cotangent vector d@) as above. Arbitrary tower
of exponents

r
T e
e

e e’ e’ ..,

satisfies this estimate. (Here r = r(z) = d,(z,z0) with a fixed z9 € M.)
Imposing appropriate conditions on V' sometimes leads to the equivalence of the
conditions of classical and quantum completeness (in case A =0). An example of
such situation was provided by A. Wintner [47] in case n = 1, with the restrictions
which mean that the derivatives of V' are small compared with V itself. However
some conditions are indeed necessary even in case n = 1. This was shown by
J. Rauch and M. Reed [33] who refer to unpublished lectures of E. Nelson. Exam-
ples given in [33] show that the classical and quantum completeness conditions are
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independent if no additional restrictions on V are imposed. (See also discussion
on classical and quantum completeness in Appendix to Sect.X.1 in the M. Reed
and B. Simon book [34].)

Remark 1.5. Theorem of I. Oleinik (i.e. Theorem 1.1 in case A = 0) was
extended to the Laplacian on forms of arbitrary degree by M.Braverman [3]. The
Braverman’s result holds for the magnetic Schrédinger operator as well (which is
well defined on forms of arbitrary degree), but we restrict ourselves to the case of
the operator on functions for the simplicity of exposition.

2. Algebraic preliminaries

We will start by considering the operator d*, which is formally adjoint to d,
so d* : A%l)(M) — C(M). This operator is related with the divergence of vector
fields. Let v be a smooth vector field on M. Denote by w, the 1-form corresponding
to v i.e. locally w, = (w,);dz? where

(wo)j = gjuv™.

Vice versa, for any smooth 1-form w we will denote by v, the corresponding vector
field, so locally v, = v£3/0z where

k kj

v, = g w;.

Then we will define the divergence of v by the formula
(2.1) dive = —d*w,.

Equivalently we can write
(2.2) d*w = —divo,.

A straightforward calculation shows that in local coordinates

1o ;0
(2.3) dlvv—paxi(pv), V=l

It follows from (2.1) that divv (as given by (2.3)) does not depend on the choice
of local coordinates but only on the metric and measure. On the other hand (2.3)
implies that div v does not depend on the metric (even though it is not immediately
seen from (2.1)).

We have the following Leibniz rule for d* (or, equivalently, for the divergence):

(2.4) d*(fw) = fd*w — (df,w), feC (M), we A%l)(M).
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For the Laplacian A (on functions) we have
(2.5) Ay = d*du = div (Vu), u € C*(M),

where Vu means the gradient of u associated with g, i.e. the vector field which
corresponds to du and is given in local coordinates as

. Ou 0
Vu = ¢’F _
R

Let us identify the magnetic potential A with the multiplication operator
A C®(M) — Afy)(M).

Then the formally adjoint operator A* is a substitution operator of the vector field
v4 into 1-forms, or in other words

(2.6) A*w = (A,w) = ¢* A wy.
This gives us a formula for d:
(2.7) dhw = (d* —iA")w = —divy, — i(4,w).
It follows that
(2.8)  di(fw) = fd'w — (df,w) —if(Aw), f€CH M), we Ay (M).
The following Leibniz rules for d¥ immediately follow:
djl(fw) :fdfélw_<dfaw>a
dy(fw) = fd'w —(daf,w),
where f, w are as in (2.8).
Using these formulas, we can write an explicit expression for the magnetic Lapla-
cian A 4. Namely,
—Ajsu =didau = (d* —iA")(du + iAu)

=d*du —iA*du + id* (Au) + A" Au

= —Au—i(A,du) —idiv(uvy) + (4, A)u

= —Au — 2i(A,du) + (id* A + |A]*)u.
Hence we obtain the following expression for the magnetic Schrodinger operator
(1.1):
(2.9) Havu=—Au—2i(A,du) + (id* A+ |A*)u + Vu.

On the other hand using the expressions (2.3) and (2.6) for the divergence and

the operator A* we easily obtain that in local coordinates

1/ 0 . ([ 0 .
(2.10) Hayvu = = <8? + zAj> {pgj (W + ZAk> u] + Vu,
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or in slightly different notations
1 .
(2.11) Hyyvu= ;(Dj + A))[pg™™ (Dy, + Ap)u] + Vu,

where D; = —i0/0x;.

Remark 2.1. A similar operator in R™ (with p = 1) was considered by T. Ikebe
and T. Kato [19], K. Jorgens [21], M.S.P. Eastham, W.D. Evans and J.B. McLeod
[11], A. Devinatz [10] in the space L?(R",dz) where dx is the standard Lebesgue
measure on R". The general operator of the form (2.10) on manifolds was studied
by H.O.Cordes [8]. In this generality it includes some natural geometric situations
(in particular the case p = ,/g).

3. Preliminaries on the Lipschitz analysis on a Riemannian
manifold

Let (M, g) be a Riemannian manifold. A function f : M — Ris called a Lipschitz
function with a Lipschitz constant C' if

(3.1) If(z) = f(2")] < Cdy(z,2"), =z,2" € M.
It is well known that in this case f is differentiable almost everywhere and
(3.2) ldf| < C

with the same constant C'. Here |df| means the length of the cotangent vector df
in the metric associated with g. The corresponding differential df, as well as the
partial derivatives of the first order, coincide with the distributional derivatives.
Vice versa if df € L (M), for the distributional differential df = (0f/0z)dx?,
then f can be modified on a set of measure 0 so that it becomes a Lipschitz
function.

The estimate (3.2) can be also rewritten in the form

(3.3) VfI<C

(again with the same constant C').

In local form (in open subsets of R™) these facts are discussed e.g. in the book
of V. Mazya [27], Sect.1.1. The correspondence between constants in (3.1), (3.2)
and (3.3) is straightforward.

The Lipschitz vector fields, differential forms etc. are defined in an obvious way

The formulas (2.1), (2.2), (2.3), (2.4), (2.7) apply to Lipschitz vector fields and
forms instead of smooth ones.
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We will need the Stokes formula, or rather the divergence formula for Lipschitz
vector fields v on M in the following simplest form:

Proposition 3.1. Let v = v(x) be a Lipschitz vector field with a compact support

on M. Then
/ dive dp = 0.
M

The proof of the Proposition can be easily reduced to the case when v is sup-
ported in a domain of local coordinates. After that we can use mollification (regu-
larization) of v to approximate v by smooth vector fields. A more general statement
can be found in [27], Sect. 6.2.

4. Proof of the main theorem

In this section we will always write H instead of H 4 y for simplicity of notations.

Let H,in and H,pq. be the minimal and maximal operators associated with the
differential expression (1.1) for H in L?(M). Here H,;, is the closure of H in
L?(M) from the initial domain C>°(M), Hpae = H7,;, (the adjoint operator to
H,in in L?(M)). Clearly

Dom (Hypaz) = {u € L*(M)| Hu € L*(M)},

where Hu is understood in the sense of distributions.

It follows from the standard functional analysis arguments (see. e.g. [2], Ap-
pendix 1), that the essential self-adjointness of H is equivalent to the symmetry
of H,,., which means that

(4.1) (Hmazt,v) = (4, Hyazv), u,v € Dom (Hpaz)-

To establish the symmetry of H,, .. we need some information about Dom (H 4z )-
We will start with a simple lemma establishing necessary local information.

Lemma 4.1. Assume as before that A € A%l)(M) and V. € L (M). Then

loc
u € Dom (Hpae) implies that u € W2(M), where W22(M) is the local Sobolev
space consisting of all functions from L? (M) such that their derivatives of the
first and second order in local coordinates also belong to L? _ in these coordinates.

loc

Proor. We will repeat an argument given in [2], Appendix 2, proof of Theorem
2.1.

We will need general local Sobolev spaces Wl’:(;Q(M ) for arbitrary integer m.
If m > 0 then the space W,”*(M) consists of functions u € L?,,.(M) such that
their derivatives of the order < m in local coordinates also belong to L? _in these

loc

coordinates. (The functions which coincide almost everywhere are identified.)
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Denote also by W2 (M) the space of functions which belong to W,"»*(M) and

comp loc

have a compact support.
If m < 0 then W[:{;Q(M ) is a dual space to W5 m?(M) and it consists of all
distributions which can be locally represented as sums of derivatives of order < —m

of functions from L? .

Assume that u € Dom (Hpqe). Due to (2.9) this means that u € L?(M) and
—Au — 2i(A, du) + (id* A+ |A*)u + Vu = f € L*(M),

where Au and (A, du) are understood in the sense of distributions, so a priori
Au € W2 (M), (A,du) € W;;*(M). Note also that (id*A + |A]*)u + Vu €

L} .(M). 1t follows from the loéoacl elliptic regularity theorem applied to —A that
u € W2 (M).

This already implies that (A,du) € L? (M). Applying the local elliptic regu-
larity theorem again we see that u € W2 (M). O

Remark 4.2. Lemma 4.1 is certainly not new, though I had difficulty to find a
statement which would exactly imply it. More general equations are considered
e.g. by D. Gilbarg and N.S. Trudinger ([14], Theorem 8.10), but with a stronger
a priori requirement u € W12,

The following key lemma provides necessary global information:

Lemma 4.3. If u € Dom (H,,,.), then

(4.2) /M Q7 daul*dp < 2[(8C* + 1)[[ull® + [lull - [|Hull] < cc.
Here || - || means the norm in L*>(M), and C is the Lipschitz constant for Q~'/>
from (1.7).

PrROOF.  Let us choose a Lipschitz function ¢ : M — R, such that ¢ has a

compact support and
(4.3) 0<p<Q /2

Note that this implies that ¢ < 1.
Let us estimate the quantity I > 0 where

I’ :/ ¢*|daul*dp.
M

To this end let us calculate first d*(¢>udau)) using (2.2), (2.7) and the Leibniz
rules from Sect.3:

d*(*udau) = P*ud dau — (d(°w), daw)
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= ¢*ud dau — ¢52<d11, dau) — 2¢u{de,dsu)
= ¢’u dhdau + o*ui A*(dau) — ¢2(dﬂ, dau) — 2¢t({do,dsu)
= Q*udidau — ¢*(du — iuA, dau) — 2¢u(dp, dsu)
= ¢u didau — <z>2|d,4u|2 — 2¢u(do, dau).
It follows that
(4.4) ¢ |daul> = —d*(p*tud su) + ¢*U(d dau) — 2¢u(dd, dsu).
Replacing d* dau by (H — V)u, we obtain

A?ldaul? = —d*(¢*udau) — 2¢u(dp, dsu) + ¢*u - Hu — q52V|u|2
< —d($Pudau) — 26uldd, dau) + ¢%a - Hu + Qlul’.

(Note that the right hand side of the last equality is real because the left hand
side is.)

Let us integrate the inequality over M. Due to (2.2) and the Stokes formula
(Proposition 3.1) the integral of the first term in the right hand side vanishes.
Taking into account that 0 < ¢ < 1 and ¢?Q < 1 due to (4.3), we can estimate
the integral of the last two terms by |lu||(||u|| + ||Hu||). Now denote by C' the
Lipschitz constant of ¢, so that |d¢| < C. Then we obtain by the Cauchy-Schwarz
inequality

2 ‘/M ou{de, dAu)du‘ =

2 ‘ / <ud¢,¢dAU>du‘ < 201 ]jull.
M

Overall we obtain the inequality
2 < 2C1|ull + [ful (]l + | Hul)-

Estimating
~ 1 ~ .
2CI||ul| < 5IZ’ + 8C%Jul|?,

we arrive at the estimate
(4.5) 1? < 2[(8C% + D)Jull® + [ull - [ Hull].

Now it is easy to construct a sequence of Lipschitz functions ¢y, k = 1,2,...,
such that ¢, satisfies

0< g <Q7'%, |dge| < C+1/k,
(4.3) for any k, ¢1 < ¢ < ..., and

Jlim ¢y (z) = Q~Y?(z), xzeM.
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Indeed, take a function x : R — R, such that y € C*°(R), 0 < x <1, x(¢) = 1if
t<1, x(t)=0ift >3, and |x'| < 1. Then we can take

(@) = x(k~"dy(x,20))Q "/ (2),

where zg € M is an arbitrary fixed point. The estimate (4.5) holds for ¢, with
C = C + 1/k. Taking the limit as k¥ — 0o, we obtain (4.2). m|

Proof of Theorem 1.1. We want to prove that the operator H,,,, is symmet-
ric.

Let us introduce a new metric §;; = Q@ 'g;; and denote the corresponding dis-
tance function by d. This means that for any z,y € M

d(z,y) = inf { / Q2ds| 7+ [0,1] M, ~(0) = 2,(1) = y} |

where v € C* and ds means the element of the arc length of v associated with g.
Denote also ~
P(z) = d(z,zo),

where zy € M is fixed. The completeness condition (b) means exactly that
P(z) - o0 as ¢ — o0,

or, equivalently, that the set {z| P(z) <t} C M is compact for any ¢t € R.
Clearly, |[dP|; < 1, which can be rewritten as

[dP|> < Q7.

(Here, as above, |dP| means the length of the cotangent vector dP with respect
to the original metric g.)
Now for two functions u,v € Dom (Ha.) consider the following integral:

It:/ <1—@>(u~H_U—v-Hu)du.
{z] P(x)<t} ¢

By the dominated convergence theorem we obviously have
(4.6) It—>/ (u-Hv—19- Hu)dy = (u, Hv) — (Hu,v) ast — .
M

(Here (-,-) means the scalar product in L?(M).) Hence the desired symmetry of
H,,4. is equivalent to the fact that I; — 0 as ¢t — oo for any u,v € Dom (Hpnaz)-
Now note that

4.7 u-Ho—0-Hu=70-Aqu—u-Av=u-d"dsv—7-ddyu.
A A

Here both terms are locally integrable due to Lemma 4.1.
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We claim that the right hand side of (4.7) can be presented as a divergence in
the following way:

(4.8) u~dj1dAv—17~df4dAu:d*(u~m—17~dAu).

Indeed, calculating the right hand side by use of the Leibniz rule (2.4) for d*
and formulas for d4, d% from Sect.3, we obtain:

d*(u-dav — 0 - dau)

= (u-d*dav —7-d*dau) — ({du,dsv) — (dv,du))
= (u-d*dav—7-d*dau) — ({du,iAv) — (dv,iAu))
= (u-d*dav —0v-d*dau) — ({dau,iAv) — (dav,iAu))
= (u-(d*dav —1i{A,dav)) — - (d*dau — i{A,dau)))

= wu-didav—7-didau,

as claimed.
Using (4.8) and the Leibniz rules, we can rewrite the integrand of I; as

(1—@) (u-Hv—0- Hu)
- (1_ PT‘U)> d*(u-dav — v -dau)
- @ [(1 _ @) (u~d,4—v—v~d,4u)} + % (w(dP, 30 — v(dau, dP))

The integral of the first term in the right hand side (with respect to du) vanishes
due to Proposition 3.1. Therefore using the Cauchy-Schwarz inequality we obtain

1 JR—
L = ;/{ sy (P TR0) = Dl dP))
1 . - .
- ;/{ » )<}(u(Ql/ZdP,Q*1/2dAv)—ﬁ(Q*1/2dAu,Q1/ZdP>> du
x x)<t

IN

1 1/ _
Z(lllQ™"2daull + lullllQ"/*davl).

By Lemma 4.3 the right hand side is O(1/t), so Iy — 0 as t = co. Due to (4.6) this
proves that H,,q. is symmetric i.e. (4.1) holds. This ends the proof of Theorem
1.1. O
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5. Examples and further comments

In this section we will provide several examples, further results and relevant
bibliographical comments (by necessity incomplete).
We will start with some particular cases of Theorem 1.1.

Theorem 5.1. Let (M, g) be a complete Riemannian manifold. Then the magnetic
Laplacian Ay = —d* da is essentially self-adjoint in L*(M,du) for any magnetic
potential A € A%l)(M) and any positive smooth measure dy.

Proor. Take Q(z) =1 and use Theorem 1.1. m|

Theorem 5.1 generalizes the classical theorem by M. Gaffney [13] which corre-
sponds to the case when A = 0 and dp = dp,.

Note however that in fact the proof of Theorem 1.1 uses some elements of the
Gaffney’s proof.

N.N. Ural’ceva [45] and S.A. Laptev [25] provided examples of elliptic operators

in L2(R",dx) of the form
0 ; 0
— | ¢ () —
Oz’ <g (x)aa:k>

(with smooth positive definite matrices (g7*)) which are not essentially self-adjoint
due to the fact that the coefficients g/* are “rapidly growing”. In these examples
the inverse matrix (g;x) is vice versa “rapidly decaying”, which implies that R™
with the metric (g;x) is not complete.

Theorem 5.2. Let (M,g) be a complete Riemannian manifold with a positive
smooth measure du, A € A%l)(M), VelLX (M), and V(z) > -C, z € M, with
a constant C. Then the magnetic Schrédinger operator H = —A, + V(x) is
essentially self-adjoint.

In case when M = R" (with the standard metric and measure) and A = 0 this
result is due to T. Carleman [5], and the Carleman proof is reproduced in the
book of .M. Glazman [16], Theorem 34 in Sect.3. In this case the requirement
V € L2, can be completely removed, i.e. replaced by V € L7 (R"™), as was shown
by T. Kato [23] (see also [34], Sect. X.4). This can be done with the help of the
Kato inequality

Alul > Rel(sgn u)Au],
for any u € L} . such that Au € Lj . Some non-positive perturbations can be
allowed as well. For example, it is sufficient to require that V' = V; + V5, where
Vi € L}, Vi > 0, and V; is bounded with respect to —A with the —A-bound
a < 1. In particular, it is sufficient to assume that
Vi =max(V,0) € L., V_ =min(V,0) € L? + L™,

loc»
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where p=2ifn<3;p>2ifn=4,and p=n/2if n > 5. The work by T. Kato
was partially motivated by the paper of B. Simon [42] who proved the essential
self-adjointness under an additional restriction compared with [23]. The reader
may consult Chapters X.4, X.5 in M. Reed and B. Simon [34] for more references,
motivations and a review.

It is actually sufficient to require only that the operator H,,;, is semi-bounded
below, as was suggested by I.M. Glazman and proved by A.Ya. Povzner [32].
Another proof was suggested by E. Wienholtz [46] and also reproduced in [16].

Though the completeness requirement looks natural in case of semi-bounded
operators, sometimes it can be relaxed and incompletness may be compensated
by a specific behavior of the potential (see e.g. A.G. Brusentsev [4] and also the
references there).

The following theorem in case M = R™ with the standard metric and measure
and with A = 0 is due to D.B. Sears (see e.g. [39, 44, 2]), who followed an idea of
an earlier paper by E.C. Titchmarsh.

Theorem 5.3. Let us fiz zo € M and denote r = r(x) = dy(x,x0). Assume that

A€ Al (M) and V(z) > =Q(r) where Q(r) > 1 for all v >0,

(5.1) /0°° & _

and one of the following two conditions is satisfied:
(a) Q=% is globally Lipschitz, i.e.

(5.2) |Q_1/2(r) — Q_1/2(r')| <Clr—r'l, rr" €]0,00);

(b) Q is monotone increasing.
Then the operator (1.1) is essentially self-adjoint.

Proor. Under condition (a) this theorem clearly follows from Theorem 1.1.

Now assume that (b) is satisfied. Then we can follow F.S. Rofe-Beketov [35] to
reduce this to the case when in fact (a) is satisfied. It is enough to construct a
new function @, such that Q(r) > Q(r) for all r > 0 and Q satisfies both (5.1) and
(a). To this end we can define Q(n) = Q(n+1), n =0,1,2,..., and then extend
Q1/2 to the semi-axis [0,00) by linear interpolation, i.e. take

Q7 an+ (1 -a)(n+1) =aQ 2 (n) + (1~ )@ *(n +1),
where 0 < o < 1, n = 0,1,.... It is easy to see that ) satisfies the desired

conditions. O

Remark 5.4. F.S. Rofe-Beketov [36] proved in case M = R™ (with the standard
metric and measure) and A = 0 that the local inequality V(z) > —Q(z) can be
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replaced by an operator inequality
H>—-eA—-Q(z)

with a constant € > 0. This allows in particular some potentials which are un-
bounded below. I. Oleinik [31] noticed that this result can be carried over to the
case of manifolds as well.

Remark 5.5. F.S. Rofe-Beketov [35] noticed that if in Theorem 5.3 we have
Q(r) < oo for all r > 0 and @ satisfies (5.2), then we can always replace @) by
another function 1 € C* such that @); also satisfies all the conditions (including
(a) with a possibly bigger Lipschitz constant).

Indeed, it suffices to construct a globally Lipschitz C*° function @ : [0,00) —
[1,00) so that Q(r)/2 < Q1(r) < 2Q(r) for all » > 0. To this end we can first
mollify Q~'/2 on each of the overlapping intervals [0,4],[2,6],[6,10], ..., by con-
volution with a positive smooth probability measure supported in a small neigh-
borood of 0. This neighborhood should depend on the chosen interval to insure
the desired inequalities. Note that the convolution does not change the Lipschitz
constant. Then we can use a partition of unity on [0,00) such that it is subor-
dinated to the covering of [0, c0) by the intervals above and consists of functions
which have uniformly bounded derivatives of any fixed order (e.g. translations of
an appropriately fixed C* function). Using such partition of unity to glue locally

mollified function @ ~'/? we arrive to the desired approximation Q; 172,

Remark 5.6. Another Sears-type result was obtained by T. Ikebe and T. Kato [19]
where magnetic Schrédinger operators in R (with the standard metric and mea-
sure) with possibly locally singular potentials were considered. The allowed local
singularities are most naturally described by the Stummel type conditions first in-
troduced by F. Stummel [43]; see also E. Wienholtz [46], E. Nelson [28], K. Jorgens
[21], G. Hellwig [18], T. Kato [23], B. Simon [42], H. Kalf and F.S. Rofe-Beketov
[22] and references there for other results on operators with singular potentials. In
particular a recent paper by H. Kalf and F.S. Rofe-Beketov [22] contains most gen-
eral results which provide the essential self-adjointness of a Schrédinger operator
in R™ under the condition that the operator is locally self-adjoint and appropriate
Sears type conditions at infinity are imposed.

Remark 5.7. B.M. Levitan [26] gave a new proof of Theorem 5.3 (in case M = R"
with the standard metric and measure and with A = 0). His proof uses the wave
equation and the finite propagation speed argument. Similar arguments were
later used by A.A. Chumak [7], P. Chernoff [6] and T. Kato [24] to prove essential
self-adjointness in a somewhat different context. A.A. Chumak considered semi-
bounded Schrédinger operators on complete Riemannian manifolds. P. Chernoff
proves in particular the essential self-adjointness for the powers of such operators
as well as Dirac operators, whereas T. Kato extends the arguments and results to



Magnetic Schrodinger operators on manifolds 17

the powers H™, m = 1,2,..., (in R") under the condition that H > —a — b|z|?
with some constants a, b.

Note however that the self-adjointness of the powers of the Laplacian on a com-
plete Riemannian manifold was first established by H.O. Cordes [8] without finite
propagation speed argument. (See also the book [9] for a variety of results on es-
sential self-adjointness of semi-bounded Schrédinger-type operators on manifolds
and their powers.)

There are many results on self-adjointness of more general higher order operators
—see e.g. M. Schechter [38] for operators in R™ (and also for similar L? results in
R™) and also M. Shubin [40] for operators on manifolds of bounded geometry, as
well as F.S. Rofe-Beketov [37] and references there.

Now we will formulate a result generalizing a theorem of I. Oleinik [31] (who
considered the case dy = dug and A = 0) which shows that in fact it is suffi-
cient to restrict the behavior of the potential V' only on some sequence of layers
or shells which eventually surround all the points in M. The motivation of this
result is obvious from the classical point of view this is obvious because the clas-
sical completeness can be guaranteed if the classical particle escaping to infinity
spends infinite time already inside the layers. The first result of this kind in case
n = 1 is due to P. Hartman [17], and further generalizations were obtained in
one-dimensional case by R. Ismagilov [20] (higher order operators), and in case
M = R" by M.G. Gimadislamov [15], F.S. Rofe-Beketov [36], M.S.P. Eastham,
W.D. Evans, J.B. McLeod [11] and A. Devinatz [10] (the last two references also
include magnetic field terms).

Theorem 5.8. Let {Qx|k =0,1,...,} be a sequence of open relatively compact
subsets with smooth boundaries in M, Qp C Quy1, UpQx = M. Denote Tj, =
Qo1 \Q—Zk, and let hy be the minimal thickness of the layer Ty, i.e. hy =
disty (Qog, M \ Qog11). Assume that A € A%l)(M) and

(5.3) Viz) > -Cvy, €Ty, k=0,1,...,

where C > 0, v, > 1, and
(5.4) Zmin{hi, hkvk_lm} = 0.
k=0

Then the operator (1.1) is essentially self-adjoint.

ProoF. Following F.S. Rofe-Beketov [36] and I. Oleinik [31] we will construct a
minorant () for the potential V', so that the conditions (a) and (b) in Theorem 1.1
are satisfied.

We will start by constructing for any £ = 0,1, ..., a function ¢, > 0 on M such
that Qr = +o0o on M \ T}, then assemble Q~'/2 as a linear combination of the

functions Q;l/z .
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Denote for any z € M
Oor (x) = disty(z, Qag), Oops1(x) = disty(z, M \ Qapy1), k=0,1,....
For p = 2k, 2k + 1 introduce sets
Y, ={z|dp(x) < hi/4}
and functions 6, : M — [0, 00),
0, (x) = disty(z, M\ Q).

Now define »
Q@) =Y, we M\ (Qy U Q)

and A
Q7 (@) = hi 8, (2) (6, () + 0L (), z e,

where p = 2k or 2k + 1. Clearly 0 < @ “/*(z) < h;* on M and Q, */*(x) = 0 if

Let us evaluate the Lipschitz constant for Qk_l/z. To this end denote f(s,t) =
s/(s +t), and observe that the absolute values of both partial derivatives of f in
s and t are bounded by (s + ) ! if s,¢ > 0, s +¢ > 0. Also both §, and g, are
Lipschitz with the Lipschitz constant 1. Now note that it is easily follows from
the triangle inequality that

op(x) +0,(z) > h/4, z€ M.
Hence by the chain rule we see that
IV(Q /%) < 2h; " - 4hi ' = 8K 2.

Hence the Lipschitz constant of Q,;l/ % does not exceed 8h,;2.
Now let us define

Q () = fjakQ;”?,
k=0

where we will adjust the coefficients a; > 0 so that all the conditions are satisfied.
Let us list these conditions turn by turn.
(a) We need the condition V' > —@Q to be satisfied which will be guaranteed if

—Cvy > —Q(z), © € Ty. This is equivalent to Q;lﬂ < (Cy)™ 2 k=0,1,...,
and will be guaranteed if aph;' < (Cyp)~/2 or

(5.5) ar, < C Py M2

(b) The Lipschitz constant of Q~'/2 is evaluated by 8 supj,(ayhy; 2), so for Q~'/2
to be Lipschitz it is sufficient to have

(5.6) ar < C1h3
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with some constant C; > 0.
(c) At last we need the condition (b) of Theorem 1.1 to be satisfied. Note that
the minimal thickness of the internal layer T} = M\ (5, U5, ) is at least /2,

and Q7Y% = axh; ! in T}. It follows that the condition (b) in Theorem 1.1 will be
satisfied if we require

(5.7) Zak = 0.
k=0

Now taking C; = C~/? we can choose
ar, = C™2 min{h2, v, /*Y,

so the conditions (5.5), (5.6) will be automatically satisfied. The condition (5.7)
will be satisfied if we require the condition (5.4) to hold. O
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